
If the elevation in the boiling point of a solution of 10 g of solute (mol. wt.= 100) in 100 g of water is \[\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ }\] , the ebullioscopic constant of water is: (A) $\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ }}{10}$ (B) \[\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ }\](C) \[\text{ 10 }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ }\](D) \[\text{ 100 }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ }\]
Answer
553.8k+ views
Hint: The elevation of the boiling point $\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}$ is a colligative property. It depends on the amount of solute. The difference in the boiling point is stated as:
Note: If the molality$\text{ }m=1\text{ }$, that is 1 mole of the solute dissolved in the 1 kilogram of the solvent then, $\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ = }{{\text{K}}_{\text{b}}}\text{ }$.Thus, molal boiling point elevation constant. The units of ${{\text{K}}_{\text{b}}}$ are $\text{ K kg mol}{{\text{l}}^{-1}}\text{ }$. The units of ${{\text{K}}_{\text{b}}}$ coming out to be,$\text{ }\dfrac{\left( \text{J }{{\text{K}}^{-1}}\text{mo}{{\text{l}}^{-1}} \right)\left( {{\text{K}}^{2}} \right)\left( \text{kg mo}{{\text{l}}^{-1}} \right)}{\left( \text{J mo}{{\text{l}}^{-1}} \right)}\text{ = K kg mol}{{\text{l}}^{-1}}\text{ }$
$\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ = }{{\text{K}}_{\text{b}}}\text{ m = }{{\text{K}}_{\text{b}}}\times \dfrac{{{\text{w}}_{\text{2}}}}{{{\text{M}}_{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{w}}_{\text{1}}}}$
Where,
$\text{ }{{\text{K}}_{\text{b}}}\text{ }$ is the ebullioscopic constant
$\text{ }{{\text{w}}_{\text{2}}}\text{ }$ is the mass of solute
$\text{ }{{\text{w}}_{1}}\text{ }$is mass of solvent
$\text{ }{{\text{M}}_{\text{2}}}\text{ }$ is the molar mass of solute
The boiling point, $\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ }$ of a liquid, is the temperature at which the vapour pressure is equal to the atmospheric pressure. When a non-volatile solute is added to a liquid, the vapour pressure of the liquid is decreased. Hence, it must be heated to higher temperatures so that its vapour pressure becomes equal to that of the atmospheric pressure. This means that the addition of a non-volatile solute to a liquid raises its boiling point.
The elevation in boiling point $\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ }$is related to the molar mass of the solute. The relation between the elevations in boiling point to the molality of solute is stated as follows:
$\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ = }{{\text{K}}_{\text{b}}}\text{ m }$
If ${{\text{w}}_{\text{2}}}\text{ kg}$of the solute of the molar mass ${{\text{M}}_{\text{2}}}$ is dissolved in ${{\text{w}}_{1}}\text{ kg}$ of the solvent, then the number of moles of the solute dissolved in $\text{1 kg}$ of the solvent would be given by,
$\text{ m }=\text{ }\dfrac{{{\text{w}}_{\text{2}}}}{{{\text{M}}_{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{w}}_{\text{1}}}}$
Then the equation becomes,
$\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ = }{{\text{K}}_{\text{b}}}\times \dfrac{{{\text{w}}_{\text{2}}}}{{{\text{M}}_{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{w}}_{\text{1}}}}$ .................... (1)
We are given the following data:
Elevation in boiling point, $\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\text{ }$
Weight of the compound given,${{w}_{2}}\text{ = 10 g}$
Weight of solvent, ${{w}_{\text{1 }}}=\text{ 100 g}$
The molecular weight of the compound, $\text{M}=\text{ 100 }$
We have to find the Ebullioscopic constant, $\text{ }{{\text{K}}_{\text{b}}}\text{ }$
On rearrangement of equation (1), we have,
$\text{ }{{\text{K}}_{\text{b}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\times {{\text{M}}_{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{w}}_{\text{1}}}}{{{\text{w}}_{\text{2}}}}\text{ }$
Let's substitute the values in the equation. We have,
$\text{ }{{\text{K}}_{\text{b}}}=\dfrac{\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}\times 100\text{ }\!\!\times\!\!\text{ 100}}{10 X 1000}\text{ = }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}$ (Since we are talking about molalilty)
Therefore, the ebullioscopic constant ${{\text{K}}_{\text{b}}}$ of the compound is equal to the$\text{ }\!\!\Delta\!\!\text{ }{{\text{T}}_{\text{b}}}$.
Hence, (B) is the correct option.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

