
If the distance between the plane \[Ax - 2y + z = d\] and the plane containing the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 3}}{4} = \dfrac{{z - 4}}{5}\] is \[\sqrt 6 \], then the value of \[\left| d \right|\] is
A. 3
B. 4
C. 5
D. 6
Answer
576.9k+ views
Hint: First of all, find the equation of the plane in which the given two lines are containing. Then use the formula that the distance between the two planes \[{a_1}x + {b_1}y + {c_1}z = {d_1}\] and \[{a_2}x + {b_2}y + {c_2}z = {d_2}\] is given by \[\dfrac{{\left| {{d_2} - {d_1}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} }}\] to get the required answer.
Complete step-by-step answer:
Let the given plane equation is \[{P_1}:Ax - 2y + z = d\]
Let \[{P_2}\] be the equation of the plane containing the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 3}}{4} = \dfrac{{z - 4}}{5}\].
We know that the plane equation containing the lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
So, the equation of plane \[{P_2}\] is given by
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 1}&{y - 2}&{z - 3} \\
2&3&4 \\
3&4&5
\end{array}} \right| = 0\]
Opening the determinant, we have
\[
\Rightarrow \left( {x - 1} \right)\left[ {3 \times 5 - 4 \times 4} \right] - \left( {y - 2} \right)\left[ {2 \times 5 - 3 \times 4} \right] + \left( {z - 3} \right)\left[ {2 \times 4 - 3 \times 3} \right] = \\
\Rightarrow \left( {x - 1} \right)\left( {15 - 16} \right) - \left( {y - 2} \right)\left( {10 - 12} \right) + \left( {z - 3} \right)\left( {8 - 9} \right) = 0 \\
\Rightarrow - \left( {x - 1} \right) + 2\left( {y - 2} \right) - \left( {z - 3} \right) = 0 \\
\Rightarrow - x + 1 + 2y - 4 - z + 3 = 0 \\
\therefore {P_2}:x - 2y + z = 0 \\
\]
We know that the distance between the two planes \[{a_1}x + {b_1}y + {c_1}z = {d_1}\] and \[{a_2}x + {b_2}y + {c_2}z = {d_2}\] is given by \[\dfrac{{\left| {{d_2} - {d_1}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} }}\].
Given that the distance between the two planes \[{P_1}\& {P_2}\] is \[\sqrt 6 \]. So, we have
\[
\Rightarrow \sqrt 6 = \dfrac{{\left| {d - 0} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {1^2}} }} \\
\Rightarrow \sqrt 6 = \dfrac{{\left| d \right|}}{{\sqrt {1 + 4 + 1} }} \\
\Rightarrow \sqrt 6 \times \sqrt 6 = \left| d \right| \\
\therefore \left| d \right| = 6 \\
\]
Thus, the correct option is D. 6
Note: The plane equation containing the lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Complete step-by-step answer:
Let the given plane equation is \[{P_1}:Ax - 2y + z = d\]
Let \[{P_2}\] be the equation of the plane containing the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 3}}{4} = \dfrac{{z - 4}}{5}\].
We know that the plane equation containing the lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
So, the equation of plane \[{P_2}\] is given by
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 1}&{y - 2}&{z - 3} \\
2&3&4 \\
3&4&5
\end{array}} \right| = 0\]
Opening the determinant, we have
\[
\Rightarrow \left( {x - 1} \right)\left[ {3 \times 5 - 4 \times 4} \right] - \left( {y - 2} \right)\left[ {2 \times 5 - 3 \times 4} \right] + \left( {z - 3} \right)\left[ {2 \times 4 - 3 \times 3} \right] = \\
\Rightarrow \left( {x - 1} \right)\left( {15 - 16} \right) - \left( {y - 2} \right)\left( {10 - 12} \right) + \left( {z - 3} \right)\left( {8 - 9} \right) = 0 \\
\Rightarrow - \left( {x - 1} \right) + 2\left( {y - 2} \right) - \left( {z - 3} \right) = 0 \\
\Rightarrow - x + 1 + 2y - 4 - z + 3 = 0 \\
\therefore {P_2}:x - 2y + z = 0 \\
\]
We know that the distance between the two planes \[{a_1}x + {b_1}y + {c_1}z = {d_1}\] and \[{a_2}x + {b_2}y + {c_2}z = {d_2}\] is given by \[\dfrac{{\left| {{d_2} - {d_1}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} }}\].
Given that the distance between the two planes \[{P_1}\& {P_2}\] is \[\sqrt 6 \]. So, we have
\[
\Rightarrow \sqrt 6 = \dfrac{{\left| {d - 0} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {1^2}} }} \\
\Rightarrow \sqrt 6 = \dfrac{{\left| d \right|}}{{\sqrt {1 + 4 + 1} }} \\
\Rightarrow \sqrt 6 \times \sqrt 6 = \left| d \right| \\
\therefore \left| d \right| = 6 \\
\]
Thus, the correct option is D. 6
Note: The plane equation containing the lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

