
If the distance between the plane \[Ax - 2y + z = d\] and the plane containing the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 3}}{4} = \dfrac{{z - 4}}{5}\] is \[\sqrt 6 \], then the value of \[\left| d \right|\] is
A. 3
B. 4
C. 5
D. 6
Answer
591k+ views
Hint: First of all, find the equation of the plane in which the given two lines are containing. Then use the formula that the distance between the two planes \[{a_1}x + {b_1}y + {c_1}z = {d_1}\] and \[{a_2}x + {b_2}y + {c_2}z = {d_2}\] is given by \[\dfrac{{\left| {{d_2} - {d_1}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} }}\] to get the required answer.
Complete step-by-step answer:
Let the given plane equation is \[{P_1}:Ax - 2y + z = d\]
Let \[{P_2}\] be the equation of the plane containing the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 3}}{4} = \dfrac{{z - 4}}{5}\].
We know that the plane equation containing the lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
So, the equation of plane \[{P_2}\] is given by
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 1}&{y - 2}&{z - 3} \\
2&3&4 \\
3&4&5
\end{array}} \right| = 0\]
Opening the determinant, we have
\[
\Rightarrow \left( {x - 1} \right)\left[ {3 \times 5 - 4 \times 4} \right] - \left( {y - 2} \right)\left[ {2 \times 5 - 3 \times 4} \right] + \left( {z - 3} \right)\left[ {2 \times 4 - 3 \times 3} \right] = \\
\Rightarrow \left( {x - 1} \right)\left( {15 - 16} \right) - \left( {y - 2} \right)\left( {10 - 12} \right) + \left( {z - 3} \right)\left( {8 - 9} \right) = 0 \\
\Rightarrow - \left( {x - 1} \right) + 2\left( {y - 2} \right) - \left( {z - 3} \right) = 0 \\
\Rightarrow - x + 1 + 2y - 4 - z + 3 = 0 \\
\therefore {P_2}:x - 2y + z = 0 \\
\]
We know that the distance between the two planes \[{a_1}x + {b_1}y + {c_1}z = {d_1}\] and \[{a_2}x + {b_2}y + {c_2}z = {d_2}\] is given by \[\dfrac{{\left| {{d_2} - {d_1}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} }}\].
Given that the distance between the two planes \[{P_1}\& {P_2}\] is \[\sqrt 6 \]. So, we have
\[
\Rightarrow \sqrt 6 = \dfrac{{\left| {d - 0} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {1^2}} }} \\
\Rightarrow \sqrt 6 = \dfrac{{\left| d \right|}}{{\sqrt {1 + 4 + 1} }} \\
\Rightarrow \sqrt 6 \times \sqrt 6 = \left| d \right| \\
\therefore \left| d \right| = 6 \\
\]
Thus, the correct option is D. 6
Note: The plane equation containing the lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Complete step-by-step answer:
Let the given plane equation is \[{P_1}:Ax - 2y + z = d\]
Let \[{P_2}\] be the equation of the plane containing the lines \[\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{3} = \dfrac{{z - 3}}{4}\] and \[\dfrac{{x - 2}}{3} = \dfrac{{y - 3}}{4} = \dfrac{{z - 4}}{5}\].
We know that the plane equation containing the lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
So, the equation of plane \[{P_2}\] is given by
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 1}&{y - 2}&{z - 3} \\
2&3&4 \\
3&4&5
\end{array}} \right| = 0\]
Opening the determinant, we have
\[
\Rightarrow \left( {x - 1} \right)\left[ {3 \times 5 - 4 \times 4} \right] - \left( {y - 2} \right)\left[ {2 \times 5 - 3 \times 4} \right] + \left( {z - 3} \right)\left[ {2 \times 4 - 3 \times 3} \right] = \\
\Rightarrow \left( {x - 1} \right)\left( {15 - 16} \right) - \left( {y - 2} \right)\left( {10 - 12} \right) + \left( {z - 3} \right)\left( {8 - 9} \right) = 0 \\
\Rightarrow - \left( {x - 1} \right) + 2\left( {y - 2} \right) - \left( {z - 3} \right) = 0 \\
\Rightarrow - x + 1 + 2y - 4 - z + 3 = 0 \\
\therefore {P_2}:x - 2y + z = 0 \\
\]
We know that the distance between the two planes \[{a_1}x + {b_1}y + {c_1}z = {d_1}\] and \[{a_2}x + {b_2}y + {c_2}z = {d_2}\] is given by \[\dfrac{{\left| {{d_2} - {d_1}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2 + {c_1}^2} }}\].
Given that the distance between the two planes \[{P_1}\& {P_2}\] is \[\sqrt 6 \]. So, we have
\[
\Rightarrow \sqrt 6 = \dfrac{{\left| {d - 0} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {1^2}} }} \\
\Rightarrow \sqrt 6 = \dfrac{{\left| d \right|}}{{\sqrt {1 + 4 + 1} }} \\
\Rightarrow \sqrt 6 \times \sqrt 6 = \left| d \right| \\
\therefore \left| d \right| = 6 \\
\]
Thus, the correct option is D. 6
Note: The plane equation containing the lines \[\dfrac{{x - {x_1}}}{{{p_1}}} = \dfrac{{y - {y_1}}}{{{p_2}}} = \dfrac{{z - {z_1}}}{{{p_3}}}\] and \[\dfrac{{x - {x_2}}}{{{q_1}}} = \dfrac{{y - {y_2}}}{{{q_2}}} = \dfrac{{z - {z_2}}}{{{q_3}}}\] is given by \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\] or \[\left| {\begin{array}{*{20}{c}}
{x - {x_2}}&{y - {y_2}}&{z - {z_2}} \\
{{p_1}}&{{p_2}}&{{p_3}} \\
{{q_1}}&{{q_2}}&{{q_3}}
\end{array}} \right| = 0\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

