Answer
Verified
447.6k+ views
Hint: Before attempting this question, one should have prior knowledge about linear programming and also remember that constraints are the restrictions under which we have to maximize or minimize the function, using this information can help you to approach the solution of the question.
Complete step-by-step answer:
According to the given information it is given that constraints of the linear programming are changed and we know that the linear programing function is given as for example $Z = 3x + 4y$ where we have to show that the given function is maximize or minimize under the situation $x + y \geqslant 4,x \geqslant 0,y \geqslant 0$.
The function $Z = 3x + 4y$ is an objective function where as $x + y \geqslant 4,x \geqslant 0,y \geqslant 0$ are the constraints which are the conditions or restrictions under which we have to show that function $Z = 3x + 4y$is maximize or minimize.
So, when we change the constraints for the given functions then we have to re-evaluated maximize or minimize function for the given function
Therefore, the problem is to be re-evaluated
Hence, option A is the correct option.
Note: In the above solution we came across the term “linear programing” which can be explained as the method which is utilized to identify the best outcome of any function. Since the outcome of any function can be differ for different situations such as the outcome can be maximum or minimum depending upon the situation provided for such cases the method of linear programming is used.
Complete step-by-step answer:
According to the given information it is given that constraints of the linear programming are changed and we know that the linear programing function is given as for example $Z = 3x + 4y$ where we have to show that the given function is maximize or minimize under the situation $x + y \geqslant 4,x \geqslant 0,y \geqslant 0$.
The function $Z = 3x + 4y$ is an objective function where as $x + y \geqslant 4,x \geqslant 0,y \geqslant 0$ are the constraints which are the conditions or restrictions under which we have to show that function $Z = 3x + 4y$is maximize or minimize.
So, when we change the constraints for the given functions then we have to re-evaluated maximize or minimize function for the given function
Therefore, the problem is to be re-evaluated
Hence, option A is the correct option.
Note: In the above solution we came across the term “linear programing” which can be explained as the method which is utilized to identify the best outcome of any function. Since the outcome of any function can be differ for different situations such as the outcome can be maximum or minimum depending upon the situation provided for such cases the method of linear programming is used.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE