
If the ${{3}^{rd}}$ , ${{4}^{th}}$ , ${{5}^{th}}$ and ${{6}^{th}}$ terms in the expansion of ${{\left( x+\text{a} \right)}^{n}}$ be respectively $a,b,c\text{ and }d,$ then prove that $\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c}$.
Answer
607.2k+ views
Hint: For solving this question first, we will expand the given term using the binomial expansion formulae and then form some equations as per the given data and then prove the result.
Complete step-by-step answer:
Given:
If ${{3}^{rd}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $a$ , ${{4}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $b$ , ${{5}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $c$ and ${{6}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $d$ . And we have to prove that, $\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c}$ .
Now, we will use the following binomial expansion result:
\[{{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}\cdot y+{}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{y}^{2}}+{}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{y}^{3}}+{}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{y}^{4}}+{}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{y}^{5}}+....................+{}^{n}{{C}_{n}}{{y}^{n}}\]
We can apply the above result to expand ${{\left( x+\text{a} \right)}^{n}}$ . Then,
\[{{\left( x+\text{a} \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}\cdot \text{a}+{}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{\text{a}}^{2}}+{}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{\text{a}}^{3}}+{}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{\text{a}}^{4}}+{}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{\text{a}}^{5}}+....................+{}^{n}{{C}_{n}}{{\text{a}}^{n}}\]
Where, ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
Now, let ${{T}_{r}}$ represent the ${{r}^{th}}$ term in the above expression. It is given to us that ${{3}^{rd}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $a$ , ${{4}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $b$ , ${{5}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $c$ and ${{6}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $d$ . Then,
${{T}_{3}}=a={}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{\text{a}}^{2}}=\dfrac{n\cdot \left( n-1 \right)}{2}\cdot {{x}^{n-2}}\cdot {{a}^{2}}$
${{T}_{4}}=b={}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{\text{a}}^{3}}=\dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)}{6}\cdot {{x}^{n-3}}\cdot {{\text{a}}^{3}}$
${{T}_{5}}=c={}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{\text{a}}^{4}}=\dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)}{24}\cdot {{x}^{n-4}}\cdot {{\text{a}}^{4}}$
${{T}_{6}}=d={}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{\text{a}}^{5}}=\dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)\cdot \left( n-4 \right)}{120}\cdot {{x}^{n-5}}\cdot {{\text{a}}^{5}}$
Now, we will calculate the expression of $\dfrac{b}{a},\dfrac{c}{b}$ and $\dfrac{d}{c}$ .
$\begin{align}
& \dfrac{{{T}_{4}}}{{{T}_{3}}}=\dfrac{b}{a}=\dfrac{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)}{6}\cdot {{x}^{n-3}}\cdot {{\text{a}}^{3}} \right)}{\left( \dfrac{n\cdot \left( n-1 \right)}{2}\cdot {{x}^{n-2}}\cdot {{a}^{2}} \right)} \\
& \Rightarrow \dfrac{b}{a}=\left( \dfrac{n-2}{3} \right)\cdot \left( \dfrac{\text{a}}{x} \right)....................\left( 1 \right) \\
\end{align}$
$\begin{align}
& \dfrac{{{T}_{5}}}{{{T}_{4}}}=\dfrac{c}{b}=\dfrac{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)}{24}\cdot {{x}^{n-4}}\cdot {{\text{a}}^{4}} \right)}{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)}{6}\cdot {{x}^{n-3}}\cdot {{\text{a}}^{3}} \right)} \\
& \Rightarrow \dfrac{c}{b}=\left( \dfrac{n-3}{4} \right)\cdot \left( \dfrac{\text{a}}{x} \right)................\left( 2 \right) \\
\end{align}$
$\begin{align}
& \dfrac{{{T}_{6}}}{{{T}_{5}}}=\dfrac{d}{c}=\dfrac{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)\cdot \left( n-4 \right)}{120}\cdot {{x}^{n-5}}\cdot {{\text{a}}^{5}} \right)}{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)}{24}\cdot {{x}^{n-4}}\cdot {{\text{a}}^{4}} \right)} \\
& \Rightarrow \dfrac{d}{c}=\left( \dfrac{n-4}{5} \right)\cdot \left( \dfrac{a}{x} \right)................\left( 3 \right) \\
\end{align}$
Now, we will try to evaluate $\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}$ . Then,
$\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{ab\left( \dfrac{b}{a}-\dfrac{c}{b} \right)}{bc\left( \dfrac{c}{b}-\dfrac{d}{c} \right)}$
Now, substitute the value of $\dfrac{b}{a},\dfrac{c}{b}$ and $\dfrac{d}{c}$ from (1), (2) and (3) in the above expression. Then,
$\begin{align}
& \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{ab\left( \dfrac{b}{a}-\dfrac{c}{b} \right)}{bc\left( \dfrac{c}{b}-\dfrac{d}{c} \right)}=\dfrac{ab\left( \left( \dfrac{n-2}{3} \right)\cdot \left( \dfrac{\text{a}}{x} \right)-\left( \dfrac{n-3}{4} \right)\cdot \left( \dfrac{\text{a}}{x} \right) \right)}{bc\left( \left( \dfrac{n-3}{4} \right)\cdot \left( \dfrac{\text{a}}{x} \right)-\left( \dfrac{n-4}{5} \right)\cdot \left( \dfrac{a}{x} \right) \right)} \\
& \Rightarrow \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{ab\left( \dfrac{n-2}{3}-\dfrac{n-3}{4} \right)}{bc\left( \dfrac{n-3}{4}-\dfrac{n-4}{5} \right)}=\dfrac{a\left( \dfrac{4n-8-3n+9}{12} \right)}{c\left( \dfrac{5n-15-4n+16}{20} \right)} \\
& \Rightarrow \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{a\left( \dfrac{n+1}{12} \right)}{c\left( \dfrac{n+1}{20} \right)}=\dfrac{20a}{12c} \\
& \Rightarrow \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c} \\
\end{align}$
Thus, from the above result, we can say that $\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c}$ .
Hence Proved.
Note: Here, the student must proceed stepwise to prove the result and don’t skip any step and in such questions before doing the calculation first analyse the result which we have to prove in such questions after getting the idea about which term we can evaluate to prove the result without any mistake.
Complete step-by-step answer:
Given:
If ${{3}^{rd}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $a$ , ${{4}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $b$ , ${{5}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $c$ and ${{6}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $d$ . And we have to prove that, $\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c}$ .
Now, we will use the following binomial expansion result:
\[{{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}\cdot y+{}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{y}^{2}}+{}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{y}^{3}}+{}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{y}^{4}}+{}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{y}^{5}}+....................+{}^{n}{{C}_{n}}{{y}^{n}}\]
We can apply the above result to expand ${{\left( x+\text{a} \right)}^{n}}$ . Then,
\[{{\left( x+\text{a} \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}+{}^{n}{{C}_{1}}{{x}^{n-1}}\cdot \text{a}+{}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{\text{a}}^{2}}+{}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{\text{a}}^{3}}+{}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{\text{a}}^{4}}+{}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{\text{a}}^{5}}+....................+{}^{n}{{C}_{n}}{{\text{a}}^{n}}\]
Where, ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .
Now, let ${{T}_{r}}$ represent the ${{r}^{th}}$ term in the above expression. It is given to us that ${{3}^{rd}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $a$ , ${{4}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $b$ , ${{5}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $c$ and ${{6}^{th}}$ term in the expansion of ${{\left( x+y \right)}^{n}}$ is $d$ . Then,
${{T}_{3}}=a={}^{n}{{C}_{2}}{{x}^{n-2}}\cdot {{\text{a}}^{2}}=\dfrac{n\cdot \left( n-1 \right)}{2}\cdot {{x}^{n-2}}\cdot {{a}^{2}}$
${{T}_{4}}=b={}^{n}{{C}_{3}}{{x}^{n-3}}\cdot {{\text{a}}^{3}}=\dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)}{6}\cdot {{x}^{n-3}}\cdot {{\text{a}}^{3}}$
${{T}_{5}}=c={}^{n}{{C}_{4}}{{x}^{n-4}}\cdot {{\text{a}}^{4}}=\dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)}{24}\cdot {{x}^{n-4}}\cdot {{\text{a}}^{4}}$
${{T}_{6}}=d={}^{n}{{C}_{5}}{{x}^{n-5}}\cdot {{\text{a}}^{5}}=\dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)\cdot \left( n-4 \right)}{120}\cdot {{x}^{n-5}}\cdot {{\text{a}}^{5}}$
Now, we will calculate the expression of $\dfrac{b}{a},\dfrac{c}{b}$ and $\dfrac{d}{c}$ .
$\begin{align}
& \dfrac{{{T}_{4}}}{{{T}_{3}}}=\dfrac{b}{a}=\dfrac{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)}{6}\cdot {{x}^{n-3}}\cdot {{\text{a}}^{3}} \right)}{\left( \dfrac{n\cdot \left( n-1 \right)}{2}\cdot {{x}^{n-2}}\cdot {{a}^{2}} \right)} \\
& \Rightarrow \dfrac{b}{a}=\left( \dfrac{n-2}{3} \right)\cdot \left( \dfrac{\text{a}}{x} \right)....................\left( 1 \right) \\
\end{align}$
$\begin{align}
& \dfrac{{{T}_{5}}}{{{T}_{4}}}=\dfrac{c}{b}=\dfrac{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)}{24}\cdot {{x}^{n-4}}\cdot {{\text{a}}^{4}} \right)}{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)}{6}\cdot {{x}^{n-3}}\cdot {{\text{a}}^{3}} \right)} \\
& \Rightarrow \dfrac{c}{b}=\left( \dfrac{n-3}{4} \right)\cdot \left( \dfrac{\text{a}}{x} \right)................\left( 2 \right) \\
\end{align}$
$\begin{align}
& \dfrac{{{T}_{6}}}{{{T}_{5}}}=\dfrac{d}{c}=\dfrac{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)\cdot \left( n-4 \right)}{120}\cdot {{x}^{n-5}}\cdot {{\text{a}}^{5}} \right)}{\left( \dfrac{n\cdot \left( n-1 \right)\cdot \left( n-2 \right)\cdot \left( n-3 \right)}{24}\cdot {{x}^{n-4}}\cdot {{\text{a}}^{4}} \right)} \\
& \Rightarrow \dfrac{d}{c}=\left( \dfrac{n-4}{5} \right)\cdot \left( \dfrac{a}{x} \right)................\left( 3 \right) \\
\end{align}$
Now, we will try to evaluate $\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}$ . Then,
$\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{ab\left( \dfrac{b}{a}-\dfrac{c}{b} \right)}{bc\left( \dfrac{c}{b}-\dfrac{d}{c} \right)}$
Now, substitute the value of $\dfrac{b}{a},\dfrac{c}{b}$ and $\dfrac{d}{c}$ from (1), (2) and (3) in the above expression. Then,
$\begin{align}
& \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{ab\left( \dfrac{b}{a}-\dfrac{c}{b} \right)}{bc\left( \dfrac{c}{b}-\dfrac{d}{c} \right)}=\dfrac{ab\left( \left( \dfrac{n-2}{3} \right)\cdot \left( \dfrac{\text{a}}{x} \right)-\left( \dfrac{n-3}{4} \right)\cdot \left( \dfrac{\text{a}}{x} \right) \right)}{bc\left( \left( \dfrac{n-3}{4} \right)\cdot \left( \dfrac{\text{a}}{x} \right)-\left( \dfrac{n-4}{5} \right)\cdot \left( \dfrac{a}{x} \right) \right)} \\
& \Rightarrow \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{ab\left( \dfrac{n-2}{3}-\dfrac{n-3}{4} \right)}{bc\left( \dfrac{n-3}{4}-\dfrac{n-4}{5} \right)}=\dfrac{a\left( \dfrac{4n-8-3n+9}{12} \right)}{c\left( \dfrac{5n-15-4n+16}{20} \right)} \\
& \Rightarrow \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{a\left( \dfrac{n+1}{12} \right)}{c\left( \dfrac{n+1}{20} \right)}=\dfrac{20a}{12c} \\
& \Rightarrow \dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c} \\
\end{align}$
Thus, from the above result, we can say that $\dfrac{{{b}^{2}}-ac}{{{c}^{2}}-bd}=\dfrac{5a}{3c}$ .
Hence Proved.
Note: Here, the student must proceed stepwise to prove the result and don’t skip any step and in such questions before doing the calculation first analyse the result which we have to prove in such questions after getting the idea about which term we can evaluate to prove the result without any mistake.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

