Answer
Verified
420.6k+ views
Hint: In this question, from the given values of tan function by using the trigonometric identities we can find the values of the sec and cosec functions. Then on substituting the respective values in the given expression of the question we can calculate the left hand side value and the right hand side value. Then on comparing the values obtained, we get the result.
\[\begin{align}
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \\
& \text{sec}\theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}\]
Complete step by step answer:
Now, from the given question we have
\[\tan \theta =\dfrac{1}{\sqrt{7}}\ \ \ \ \ ...(a)\]
Now, by using the trigonometric identity which gives the relation between the function that are mentioned in the hint, we get the following
\[\Rightarrow \tan \theta =\dfrac{\sin \theta }{\cos \theta }\]
Now, this can also be written as the following using the other relations given in the hint as follow
\[\begin{align}
& \Rightarrow {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}-1={{\tan }^{2}}\theta \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}={{\tan }^{2}}\theta +1 \\
\end{align}\]
Let us now substitute the value from the question and as well as from equation (a) in this
\[\begin{align}
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}={{\left( \dfrac{1}{\sqrt{7}} \right)}^{2}}+1 \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}=\left( \dfrac{1}{7} \right)+1 \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}=\dfrac{8}{7} \\
\end{align}\]
Now, this can be further written as
\[\begin{align}
& \Rightarrow \left( \dfrac{1}{\cos \theta } \right)=\sqrt{\dfrac{8}{7}} \\
& \Rightarrow \cos \theta =\sqrt{\dfrac{7}{8}} \\
\end{align}\]
Hence, we can get the following from the relation given in the hint as follows
\[\begin{align}
& \Rightarrow \cos \theta =\sqrt{\dfrac{7}{8}} \\
& \left( \sec \theta =\dfrac{1}{\cos \theta } \right) \\
& \Rightarrow \sec \theta =\dfrac{1}{\sqrt{\dfrac{7}{8}}} \\
& \Rightarrow \sec \theta =\sqrt{\dfrac{8}{7}} \\
\end{align}\]
Now, using the relation between the sin and cos function, we have
\[\Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Now, this can be used to get the expression which can be written as
\[\begin{align}
& \Rightarrow {{\left( \sqrt{\dfrac{7}{8}} \right)}^{2}}+{{\sin }^{2}}\theta =1 \\
& \Rightarrow \dfrac{7}{8}+{{\sin }^{2}}\theta =1 \\
& \Rightarrow {{\sin }^{2}}\theta =1-\dfrac{7}{8} \\
& \Rightarrow {{\sin }^{2}}\theta =\dfrac{1}{8} \\
& \Rightarrow \sin \theta =\sqrt{\dfrac{1}{8}} \\
\end{align}\]
Hence, we can get the following from the relation given in the hint as follows
\[\begin{align}
& \Rightarrow \sin \theta =\sqrt{\dfrac{1}{8}} \\
& \left( \text{cosec}\theta =\dfrac{1}{\sin \theta } \right) \\
& \Rightarrow \text{cosec}\theta =\dfrac{1}{\sqrt{\dfrac{1}{8}}} \\
& \Rightarrow \text{cosec}\theta =\sqrt{\dfrac{8}{1}}=\sqrt{8} \\
\end{align}\]
Now, from the given expression in the question, on substituting the values, we have
\[\dfrac{\text{cose}{{\text{c}}^{2}}\theta -{{\sec }^{2}}\theta }{\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}\]
Let us first consider the left hand side and calculate its value
\[L.H.S=\dfrac{\text{cose}{{\text{c}}^{2}}\theta -{{\sec }^{2}}\theta }{\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta }\]
Thus, the value of right hand side is equal to left hand side
Hence, it is verified that
\[\dfrac{\text{cose}{{\text{c}}^{2}}\theta -{{\sec }^{2}}\theta }{\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}\]
Substituting the value of $\text{cosec}\theta =\sqrt{8}$ and $\sec \theta =\sqrt{\dfrac{8}{7}}$ in the above equation we get,
\[\begin{align}
& L.H.S=\dfrac{{{\left( \sqrt{8} \right)}^{2}}-{{\left( \sqrt{\dfrac{8}{7}} \right)}^{2}}}{{{\left( \sqrt{8} \right)}^{2}}+{{\left( \sqrt{\dfrac{8}{7}} \right)}^{2}}} \\
& L.H.S=\dfrac{8-\dfrac{8}{7}}{8+\dfrac{8}{7}} \\
\end{align}\]
Taking 7 as L.C.M in both the numerator and the denominator we get,
\[\begin{align}
& L.H.S=\dfrac{\dfrac{56-8}{7}}{\dfrac{56+8}{7}} \\
& L.H.S=\dfrac{\dfrac{48}{7}}{\dfrac{64}{7}} \\
& L.H.S=\dfrac{48}{64} \\
& L.H.S=\dfrac{3}{4} \\
\end{align}\]
Note: The other way of solving the above problem is as follows:
\[\dfrac{\text{cose}{{\text{c}}^{2}}\theta -{{\sec }^{2}}\theta }{\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}\]
We are going to solve the L.H.S of the above equation.
\[\dfrac{\text{cose}{{\text{c}}^{2}}\theta -{{\sec }^{2}}\theta }{\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta }\]……….. Eq. (b)
We know the following trigonometric properties:
$\begin{align}
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
\end{align}$
Using the above properties in eq. (b) we get,
\[\dfrac{\dfrac{1}{{{\sin }^{2}}\theta }-\dfrac{1}{{{\cos }^{2}}\theta }}{\dfrac{1}{{{\sin }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta }}\]
Taking ${{\sin }^{2}}\theta {{\cos }^{2}}\theta $ as common in the numerator and denominator we get,
$\begin{align}
& \dfrac{\dfrac{{{\cos }^{2}}\theta -{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }}{\dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }} \\
& =\dfrac{{{\cos }^{2}}\theta -{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta } \\
\end{align}$
There are following trigonometric identities which can be used to simplify the above expression are as follows:
$\begin{align}
& {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta \\
& {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\
\end{align}$
$\begin{align}
& \dfrac{{{\cos }^{2}}\theta -{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta } \\
& =\cos 2\theta \\
\end{align}$
It is also given in the question that $\tan \theta =\dfrac{1}{\sqrt{7}}$ and we know that:
$\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }$
Substituting the above expansion in the above result we get,
$\begin{align}
& \cos 2\theta \\
& =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } \\
\end{align}$
Substituting $\tan \theta =\dfrac{1}{\sqrt{7}}$ in the above equation we get,
$\dfrac{1-{{\left( \dfrac{1}{\sqrt{7}} \right)}^{2}}}{1+{{\left( \dfrac{1}{\sqrt{7}} \right)}^{2}}}$
$\begin{align}
& =\dfrac{1-\dfrac{1}{7}}{1+\dfrac{1}{7}} \\
& =\dfrac{\dfrac{6}{7}}{\dfrac{8}{7}}=\dfrac{3}{4} \\
\end{align}$
R.H.S of the given equation is given as $\dfrac{3}{4}$. Hence, we have proved the given equation.
\[\begin{align}
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \\
& \text{sec}\theta =\dfrac{1}{\cos \theta } \\
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
\end{align}\]
Complete step by step answer:
Now, from the given question we have
\[\tan \theta =\dfrac{1}{\sqrt{7}}\ \ \ \ \ ...(a)\]
Now, by using the trigonometric identity which gives the relation between the function that are mentioned in the hint, we get the following
\[\Rightarrow \tan \theta =\dfrac{\sin \theta }{\cos \theta }\]
Now, this can also be written as the following using the other relations given in the hint as follow
\[\begin{align}
& \Rightarrow {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}-1={{\tan }^{2}}\theta \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}={{\tan }^{2}}\theta +1 \\
\end{align}\]
Let us now substitute the value from the question and as well as from equation (a) in this
\[\begin{align}
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}={{\left( \dfrac{1}{\sqrt{7}} \right)}^{2}}+1 \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}=\left( \dfrac{1}{7} \right)+1 \\
& \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}=\dfrac{8}{7} \\
\end{align}\]
Now, this can be further written as
\[\begin{align}
& \Rightarrow \left( \dfrac{1}{\cos \theta } \right)=\sqrt{\dfrac{8}{7}} \\
& \Rightarrow \cos \theta =\sqrt{\dfrac{7}{8}} \\
\end{align}\]
Hence, we can get the following from the relation given in the hint as follows
\[\begin{align}
& \Rightarrow \cos \theta =\sqrt{\dfrac{7}{8}} \\
& \left( \sec \theta =\dfrac{1}{\cos \theta } \right) \\
& \Rightarrow \sec \theta =\dfrac{1}{\sqrt{\dfrac{7}{8}}} \\
& \Rightarrow \sec \theta =\sqrt{\dfrac{8}{7}} \\
\end{align}\]
Now, using the relation between the sin and cos function, we have
\[\Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1\]
Now, this can be used to get the expression which can be written as
\[\begin{align}
& \Rightarrow {{\left( \sqrt{\dfrac{7}{8}} \right)}^{2}}+{{\sin }^{2}}\theta =1 \\
& \Rightarrow \dfrac{7}{8}+{{\sin }^{2}}\theta =1 \\
& \Rightarrow {{\sin }^{2}}\theta =1-\dfrac{7}{8} \\
& \Rightarrow {{\sin }^{2}}\theta =\dfrac{1}{8} \\
& \Rightarrow \sin \theta =\sqrt{\dfrac{1}{8}} \\
\end{align}\]
Hence, we can get the following from the relation given in the hint as follows
\[\begin{align}
& \Rightarrow \sin \theta =\sqrt{\dfrac{1}{8}} \\
& \left( \text{cosec}\theta =\dfrac{1}{\sin \theta } \right) \\
& \Rightarrow \text{cosec}\theta =\dfrac{1}{\sqrt{\dfrac{1}{8}}} \\
& \Rightarrow \text{cosec}\theta =\sqrt{\dfrac{8}{1}}=\sqrt{8} \\
\end{align}\]
Now, from the given expression in the question, on substituting the values, we have
\[\dfrac{\text{cose}{{\text{c}}^{2}}\theta -{{\sec }^{2}}\theta }{\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}\]
Let us first consider the left hand side and calculate its value
\[L.H.S=\dfrac{\text{cose}{{\text{c}}^{2}}\theta -{{\sec }^{2}}\theta }{\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta }\]
Thus, the value of right hand side is equal to left hand side
Hence, it is verified that
\[\dfrac{\text{cose}{{\text{c}}^{2}}\theta -{{\sec }^{2}}\theta }{\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}\]
Substituting the value of $\text{cosec}\theta =\sqrt{8}$ and $\sec \theta =\sqrt{\dfrac{8}{7}}$ in the above equation we get,
\[\begin{align}
& L.H.S=\dfrac{{{\left( \sqrt{8} \right)}^{2}}-{{\left( \sqrt{\dfrac{8}{7}} \right)}^{2}}}{{{\left( \sqrt{8} \right)}^{2}}+{{\left( \sqrt{\dfrac{8}{7}} \right)}^{2}}} \\
& L.H.S=\dfrac{8-\dfrac{8}{7}}{8+\dfrac{8}{7}} \\
\end{align}\]
Taking 7 as L.C.M in both the numerator and the denominator we get,
\[\begin{align}
& L.H.S=\dfrac{\dfrac{56-8}{7}}{\dfrac{56+8}{7}} \\
& L.H.S=\dfrac{\dfrac{48}{7}}{\dfrac{64}{7}} \\
& L.H.S=\dfrac{48}{64} \\
& L.H.S=\dfrac{3}{4} \\
\end{align}\]
Note: The other way of solving the above problem is as follows:
\[\dfrac{\text{cose}{{\text{c}}^{2}}\theta -{{\sec }^{2}}\theta }{\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta }=\dfrac{3}{4}\]
We are going to solve the L.H.S of the above equation.
\[\dfrac{\text{cose}{{\text{c}}^{2}}\theta -{{\sec }^{2}}\theta }{\text{cose}{{\text{c}}^{2}}\theta +{{\sec }^{2}}\theta }\]……….. Eq. (b)
We know the following trigonometric properties:
$\begin{align}
& \text{cosec}\theta =\dfrac{1}{\sin \theta } \\
& \sec \theta =\dfrac{1}{\cos \theta } \\
\end{align}$
Using the above properties in eq. (b) we get,
\[\dfrac{\dfrac{1}{{{\sin }^{2}}\theta }-\dfrac{1}{{{\cos }^{2}}\theta }}{\dfrac{1}{{{\sin }^{2}}\theta }+\dfrac{1}{{{\cos }^{2}}\theta }}\]
Taking ${{\sin }^{2}}\theta {{\cos }^{2}}\theta $ as common in the numerator and denominator we get,
$\begin{align}
& \dfrac{\dfrac{{{\cos }^{2}}\theta -{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }}{\dfrac{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta {{\cos }^{2}}\theta }} \\
& =\dfrac{{{\cos }^{2}}\theta -{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta } \\
\end{align}$
There are following trigonometric identities which can be used to simplify the above expression are as follows:
$\begin{align}
& {{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta \\
& {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\
\end{align}$
$\begin{align}
& \dfrac{{{\cos }^{2}}\theta -{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta +{{\sin }^{2}}\theta } \\
& =\cos 2\theta \\
\end{align}$
It is also given in the question that $\tan \theta =\dfrac{1}{\sqrt{7}}$ and we know that:
$\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }$
Substituting the above expansion in the above result we get,
$\begin{align}
& \cos 2\theta \\
& =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } \\
\end{align}$
Substituting $\tan \theta =\dfrac{1}{\sqrt{7}}$ in the above equation we get,
$\dfrac{1-{{\left( \dfrac{1}{\sqrt{7}} \right)}^{2}}}{1+{{\left( \dfrac{1}{\sqrt{7}} \right)}^{2}}}$
$\begin{align}
& =\dfrac{1-\dfrac{1}{7}}{1+\dfrac{1}{7}} \\
& =\dfrac{\dfrac{6}{7}}{\dfrac{8}{7}}=\dfrac{3}{4} \\
\end{align}$
R.H.S of the given equation is given as $\dfrac{3}{4}$. Hence, we have proved the given equation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell