If \[\tan \beta = \dfrac{{\tan \alpha + \tan \gamma }}{{1 + \tan \alpha \tan \gamma }}\]prove that \[\sin 2\beta \]\[ = \dfrac{{\sin 2\alpha + \sin 2\gamma }}{{1 + \sin 2\alpha \sin 2\gamma }}\]
Last updated date: 30th Mar 2023
•
Total views: 207k
•
Views today: 1.83k
Answer
207k+ views
Hint: So, here we need to first solve for \[\tan \beta \] and then we have to prove for \[\sin 2\beta \]. In order to prove, we need to know some trigonometric formulas are \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\],
\[\sin (A + B) = \sin A\operatorname{Cos} B + \operatorname{Cos} A\operatorname{Sin} B\],
\[\cos (A - B) = \operatorname{Cos} A\operatorname{Cos} B - \operatorname{Sin} A\operatorname{Sin} B\],
By using all trigonometric identities to get the required solution.
Complete step-by-step answer:
We are given, \[\tan \beta = \dfrac{{\tan \alpha + \tan \gamma }}{{1 + \tan \alpha \tan \gamma }}\]
First, comparing the trigonometric identity with the above function, then
Now, we know the formula, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\].
\[ = \dfrac{{\dfrac{{\sin \alpha }}{{\cos \alpha }} + \dfrac{{\sin \gamma }}{{\cos \gamma }}}}{{1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \gamma }}{{\cos \gamma }}} \right)}}\]
Now, we need to cross multiply on both numerator and denominator, we will get;
\[ = \dfrac{{\sin \alpha \cos \gamma + \cos \alpha \sin \gamma }}{{1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \gamma }}{{\cos \gamma }}} \right)}}\]
\[ = \dfrac{{\sin \alpha \cos \gamma + \cos \alpha \sin \gamma }}{{1 + \left( {\dfrac{{\sin \alpha \sin \gamma }}{{\cos \alpha \cos \gamma }}} \right)}}\]
\[ = \dfrac{{\sin \alpha \cos \gamma + \cos \alpha \sin \gamma }}{{\cos \alpha \cos \gamma + \sin \alpha \sin \gamma }}\]
Now, we know the formula of trigonometric function, we have
\[\sin (A + B) = \sin A\operatorname{Cos} B + \operatorname{Cos} A\operatorname{Sin} B\],
\[\cos (A - B) = \operatorname{Cos} A\operatorname{Cos} B - \operatorname{Sin} A\operatorname{Sin} B\],
So let us substitute the formulas in the above equation, we get;
\[ = \dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}\]
Therefore, \[\tan \beta = \dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}\] ---------(1)
Now, let us take \[\sin 2\beta \], which is given in the question.
\[\sin 2\beta = \dfrac{{\sin 2\alpha + \sin 2\gamma }}{{1 + \sin 2\alpha \sin 2\gamma }}\]
We know the formula for \[\sin 2\beta \], which we will use, and it is given as:
\[ \Rightarrow \sin 2\beta = \dfrac{{2\tan \beta }}{{1 + {{\tan }^2}\beta }}\]
As we mentioned earlier the formula for \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\], so let us substitute in the above mentioned equation, we get;
\[ = \dfrac{{2\dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}}}{{1 + {{\left( {\dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}} \right)}^2}}}\]
Now, we need to again cross multiply for the above equation of denominator then we get,
\[ = \dfrac{{2\dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}}}{{\dfrac{{{{(\cos (\alpha - \gamma ))}^2} + {{(\sin (\alpha + \gamma ))}^2}}}{{{{(\cos (\alpha - \gamma ))}^2}}}}}\]
On simplifying, we get
\[ = \dfrac{{2\sin (\alpha + \gamma )\cos (\alpha - \gamma )}}{{{{(\cos (\alpha - \gamma ))}^2} + {{(\sin (\alpha + \gamma ))}^2}}}\]
Now, in the above equation, numerator is in the form of:
\[ \Rightarrow 2\sin (A)\cos (B) = \sin (A + B) + \sin (A - B)\]
\[ = \dfrac{{\sin (\alpha + \gamma + \alpha - \gamma ) + \sin (\alpha + \gamma - \alpha + \gamma )}}{{{{\cos }^2}(\alpha - \gamma ) + {{\sin }^2}(\alpha + \gamma )}}\]
\[ = \dfrac{{\sin (2\alpha ) + \sin (2\gamma )}}{{{{\cos }^2}(\alpha - \gamma ) + {{\sin }^2}(\alpha + \gamma )}}\]
Now, let us multiply both numerator and denominator by 2, then:
\[ = \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2[{{\cos }^2}(\alpha - \gamma ) + {{\sin }^2}(\alpha + \gamma )]}}\]
\[ = \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2{{\cos }^2}(\alpha - \gamma ) + 2{{\sin }^2}(\alpha + \gamma )}}\]
We know that ,
\[
\Rightarrow 2{\cos ^2}\theta = 1 + \cos 2\theta \\
\Rightarrow 2{\sin ^2}\theta = 1 - \cos 2\theta \;
\]
\[ \Rightarrow \cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
\[ \Rightarrow \cos 2\theta = 2{\cos ^2}\theta - 1\]
\[ \Rightarrow \cos 2\theta = 1 - 2{\sin ^2}\theta \]
Now, by using the above mentioned formula, we will substitute in the aforementioned equation, then we will get;
\[ = \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{1 + \cos (2\alpha - 2\gamma ) + 1 - \cos (2\alpha + 2\gamma )}}\]
\[ = \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2 + \cos (2\alpha - 2\gamma ) - \cos (2\alpha - 2\gamma )}}\]
Now, the denominator in the above equation is in the form of:
\[ \Rightarrow \cos (A - B) - cos(A + B) = \cos A\cos B + \sin A\sin B - \cos A\cos B + \sin A\sin B\]
\[ \Rightarrow \cos (A - B) - cos(A + B) = 2\sin A\sin B\]
Now, by applying the above formula in the equation, we get:
\[ = \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2 + 2\sin 2\alpha \sin 2\gamma }}\]
Now let us take two as common both in numerator and denominator, which gets cancelled,
\[ = \dfrac{{\sin 2\alpha + \sin 2\gamma }}{{1 + \sin 2\alpha \sin 2\gamma }}\]
Therefore, L.H.S = R.H.S
Hence, Proved.
Note: It is must that most of the trigonometric equations always rely on formulas which are mentioned above and if we follow that then we will be able to achieve our solution. We need to prove the given problem by using trigonometric identity and substitution methods.
\[\sin (A + B) = \sin A\operatorname{Cos} B + \operatorname{Cos} A\operatorname{Sin} B\],
\[\cos (A - B) = \operatorname{Cos} A\operatorname{Cos} B - \operatorname{Sin} A\operatorname{Sin} B\],
By using all trigonometric identities to get the required solution.
Complete step-by-step answer:
We are given, \[\tan \beta = \dfrac{{\tan \alpha + \tan \gamma }}{{1 + \tan \alpha \tan \gamma }}\]
First, comparing the trigonometric identity with the above function, then
Now, we know the formula, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\].
\[ = \dfrac{{\dfrac{{\sin \alpha }}{{\cos \alpha }} + \dfrac{{\sin \gamma }}{{\cos \gamma }}}}{{1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \gamma }}{{\cos \gamma }}} \right)}}\]
Now, we need to cross multiply on both numerator and denominator, we will get;
\[ = \dfrac{{\sin \alpha \cos \gamma + \cos \alpha \sin \gamma }}{{1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \gamma }}{{\cos \gamma }}} \right)}}\]
\[ = \dfrac{{\sin \alpha \cos \gamma + \cos \alpha \sin \gamma }}{{1 + \left( {\dfrac{{\sin \alpha \sin \gamma }}{{\cos \alpha \cos \gamma }}} \right)}}\]
\[ = \dfrac{{\sin \alpha \cos \gamma + \cos \alpha \sin \gamma }}{{\cos \alpha \cos \gamma + \sin \alpha \sin \gamma }}\]
Now, we know the formula of trigonometric function, we have
\[\sin (A + B) = \sin A\operatorname{Cos} B + \operatorname{Cos} A\operatorname{Sin} B\],
\[\cos (A - B) = \operatorname{Cos} A\operatorname{Cos} B - \operatorname{Sin} A\operatorname{Sin} B\],
So let us substitute the formulas in the above equation, we get;
\[ = \dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}\]
Therefore, \[\tan \beta = \dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}\] ---------(1)
Now, let us take \[\sin 2\beta \], which is given in the question.
\[\sin 2\beta = \dfrac{{\sin 2\alpha + \sin 2\gamma }}{{1 + \sin 2\alpha \sin 2\gamma }}\]
We know the formula for \[\sin 2\beta \], which we will use, and it is given as:
\[ \Rightarrow \sin 2\beta = \dfrac{{2\tan \beta }}{{1 + {{\tan }^2}\beta }}\]
As we mentioned earlier the formula for \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\], so let us substitute in the above mentioned equation, we get;
\[ = \dfrac{{2\dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}}}{{1 + {{\left( {\dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}} \right)}^2}}}\]
Now, we need to again cross multiply for the above equation of denominator then we get,
\[ = \dfrac{{2\dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}}}{{\dfrac{{{{(\cos (\alpha - \gamma ))}^2} + {{(\sin (\alpha + \gamma ))}^2}}}{{{{(\cos (\alpha - \gamma ))}^2}}}}}\]
On simplifying, we get
\[ = \dfrac{{2\sin (\alpha + \gamma )\cos (\alpha - \gamma )}}{{{{(\cos (\alpha - \gamma ))}^2} + {{(\sin (\alpha + \gamma ))}^2}}}\]
Now, in the above equation, numerator is in the form of:
\[ \Rightarrow 2\sin (A)\cos (B) = \sin (A + B) + \sin (A - B)\]
\[ = \dfrac{{\sin (\alpha + \gamma + \alpha - \gamma ) + \sin (\alpha + \gamma - \alpha + \gamma )}}{{{{\cos }^2}(\alpha - \gamma ) + {{\sin }^2}(\alpha + \gamma )}}\]
\[ = \dfrac{{\sin (2\alpha ) + \sin (2\gamma )}}{{{{\cos }^2}(\alpha - \gamma ) + {{\sin }^2}(\alpha + \gamma )}}\]
Now, let us multiply both numerator and denominator by 2, then:
\[ = \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2[{{\cos }^2}(\alpha - \gamma ) + {{\sin }^2}(\alpha + \gamma )]}}\]
\[ = \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2{{\cos }^2}(\alpha - \gamma ) + 2{{\sin }^2}(\alpha + \gamma )}}\]
We know that ,
\[
\Rightarrow 2{\cos ^2}\theta = 1 + \cos 2\theta \\
\Rightarrow 2{\sin ^2}\theta = 1 - \cos 2\theta \;
\]
\[ \Rightarrow \cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta \]
\[ \Rightarrow \cos 2\theta = 2{\cos ^2}\theta - 1\]
\[ \Rightarrow \cos 2\theta = 1 - 2{\sin ^2}\theta \]
Now, by using the above mentioned formula, we will substitute in the aforementioned equation, then we will get;
\[ = \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{1 + \cos (2\alpha - 2\gamma ) + 1 - \cos (2\alpha + 2\gamma )}}\]
\[ = \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2 + \cos (2\alpha - 2\gamma ) - \cos (2\alpha - 2\gamma )}}\]
Now, the denominator in the above equation is in the form of:
\[ \Rightarrow \cos (A - B) - cos(A + B) = \cos A\cos B + \sin A\sin B - \cos A\cos B + \sin A\sin B\]
\[ \Rightarrow \cos (A - B) - cos(A + B) = 2\sin A\sin B\]
Now, by applying the above formula in the equation, we get:
\[ = \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2 + 2\sin 2\alpha \sin 2\gamma }}\]
Now let us take two as common both in numerator and denominator, which gets cancelled,
\[ = \dfrac{{\sin 2\alpha + \sin 2\gamma }}{{1 + \sin 2\alpha \sin 2\gamma }}\]
Therefore, L.H.S = R.H.S
Hence, Proved.
Note: It is must that most of the trigonometric equations always rely on formulas which are mentioned above and if we follow that then we will be able to achieve our solution. We need to prove the given problem by using trigonometric identity and substitution methods.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
