
If $\tan A-\tan B=x\ and\ \cot B-\cot A=y,$ prove that $\cot \left( A-B \right)=\dfrac{1}{x}+\dfrac{1}{y}$.
Answer
590.4k+ views
- Hint:Here, we do not need to calculate exact values of trigonometric functions. Just use the given equations to get a relationship of equations for proving. Find the value of $\tan A-\tan B,\tan A.\tan B$ using the given equations, now put these values in the trigonometric identity $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$
And use the relation of tan and cot i.e.. $\tan \theta .\cot \theta =1\ or\ \tan \theta =\dfrac{1}{\cot \theta }$.
Complete step-by-step solution -
To prove
$\cot \left( A-B \right)=\dfrac{1}{x}+\dfrac{1}{y}.................\left( i \right)$
It is given that $\tan A-\tan B=x\ and\ \cot B-\cot A=y$. Let us suppose them in form of equations as,
$\tan A-\tan B=x...........\left( ii \right)$
$\cot B-\cot A=y............\left( iii \right)$
Let us take the LHS part of equation (i) and simplify it to get RHS.
So, LHS = cot (A – B)
Now, we know $\tan \theta =\dfrac{1}{\cot \theta }$ , so $\cot \left( A-B \right)$ can be written in form of tan as,
$LHS=\dfrac{1}{\tan \left( A-B \right)}...........\left( iv \right)$
Now, we know the trigonometric identity of tan (A – B) as,
$\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}.............\left( v \right)$
Hence, LHS of equation (iv) can be written with the help of equation (v) as,
$LHS=\dfrac{1}{\dfrac{\tan A-\tan B}{1+\tan A\tan B}}=\dfrac{1+\tan A\tan B}{\tan A-\tan B}............\left( vi \right)$
Now, let us simplify equation (iii), we get,
$\cot B-\cot A=y$
We have $\cot \theta =\dfrac{1}{\tan \theta }$, so we get,
\[\begin{align}
& \dfrac{1}{\tan B}-\dfrac{1}{\tan A}=y \\
& \Rightarrow \dfrac{\tan A-\tan B}{\tan A\tan B}=y \\
\end{align}\]
From equation (ii), $\tan A-\tan B=x$, so we can rewrite the above equation as,
$\begin{align}
& \dfrac{x}{\tan A\tan B}=y \\
& \Rightarrow \tan A\tan B=\dfrac{x}{y}.............\left( vii \right) \\
\end{align}$
Now, putting the values of $\tan A.\tan B,\ \tan A-\tan B$ from equation (vii) and (ii) respectively in the equation (vi), we get
$\begin{align}
& LHS=\dfrac{1+\left( \dfrac{x}{y} \right)}{x}=\dfrac{1}{x}+\left( \dfrac{x}{y} \right)\left( \dfrac{1}{x} \right) \\
& \Rightarrow LHS=\dfrac{1}{x}+\dfrac{1}{y}=RHS \\
\end{align}$
So, LHS = RHS from the above equation. Hence, it is proved that,
$\cot \left( A-B \right)=\dfrac{1}{x}+\dfrac{1}{y}$
Note: Another approach for proving the given relation that we can put values of ‘x’ and ‘y’ in RHS and simplify it further to get LHS i.e. $cot\left( A-B \right)$.
Don’t confuse the formula of $\tan (A-B),\tan (A+B)$. One may use $\tan \left( A-B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ which is wrong. So, take care with the trigonometric identities to solve these kinds of questions.
No need for exact values of trigonometric functions. One can waste his/her time getting values from them. Just use the given relationships to prove the given equation.
And use the relation of tan and cot i.e.. $\tan \theta .\cot \theta =1\ or\ \tan \theta =\dfrac{1}{\cot \theta }$.
Complete step-by-step solution -
To prove
$\cot \left( A-B \right)=\dfrac{1}{x}+\dfrac{1}{y}.................\left( i \right)$
It is given that $\tan A-\tan B=x\ and\ \cot B-\cot A=y$. Let us suppose them in form of equations as,
$\tan A-\tan B=x...........\left( ii \right)$
$\cot B-\cot A=y............\left( iii \right)$
Let us take the LHS part of equation (i) and simplify it to get RHS.
So, LHS = cot (A – B)
Now, we know $\tan \theta =\dfrac{1}{\cot \theta }$ , so $\cot \left( A-B \right)$ can be written in form of tan as,
$LHS=\dfrac{1}{\tan \left( A-B \right)}...........\left( iv \right)$
Now, we know the trigonometric identity of tan (A – B) as,
$\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}.............\left( v \right)$
Hence, LHS of equation (iv) can be written with the help of equation (v) as,
$LHS=\dfrac{1}{\dfrac{\tan A-\tan B}{1+\tan A\tan B}}=\dfrac{1+\tan A\tan B}{\tan A-\tan B}............\left( vi \right)$
Now, let us simplify equation (iii), we get,
$\cot B-\cot A=y$
We have $\cot \theta =\dfrac{1}{\tan \theta }$, so we get,
\[\begin{align}
& \dfrac{1}{\tan B}-\dfrac{1}{\tan A}=y \\
& \Rightarrow \dfrac{\tan A-\tan B}{\tan A\tan B}=y \\
\end{align}\]
From equation (ii), $\tan A-\tan B=x$, so we can rewrite the above equation as,
$\begin{align}
& \dfrac{x}{\tan A\tan B}=y \\
& \Rightarrow \tan A\tan B=\dfrac{x}{y}.............\left( vii \right) \\
\end{align}$
Now, putting the values of $\tan A.\tan B,\ \tan A-\tan B$ from equation (vii) and (ii) respectively in the equation (vi), we get
$\begin{align}
& LHS=\dfrac{1+\left( \dfrac{x}{y} \right)}{x}=\dfrac{1}{x}+\left( \dfrac{x}{y} \right)\left( \dfrac{1}{x} \right) \\
& \Rightarrow LHS=\dfrac{1}{x}+\dfrac{1}{y}=RHS \\
\end{align}$
So, LHS = RHS from the above equation. Hence, it is proved that,
$\cot \left( A-B \right)=\dfrac{1}{x}+\dfrac{1}{y}$
Note: Another approach for proving the given relation that we can put values of ‘x’ and ‘y’ in RHS and simplify it further to get LHS i.e. $cot\left( A-B \right)$.
Don’t confuse the formula of $\tan (A-B),\tan (A+B)$. One may use $\tan \left( A-B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}$ which is wrong. So, take care with the trigonometric identities to solve these kinds of questions.
No need for exact values of trigonometric functions. One can waste his/her time getting values from them. Just use the given relationships to prove the given equation.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

