
If $\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ , then $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $ equals
(A) $ - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
(B) $\left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
(C) $\left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} + \dfrac{1}{2}} \right)$
(D) $\left( {\dfrac{1}{{\left( {n - 1} \right)\left( {n - 2} \right)}} + \dfrac{1}{2}} \right)$
Answer
559.5k+ views
Hint: Here, the sum of $n$ consecutive terms of an expression is given as $\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$. We have to firstly find the term ${t_r}$ by using formula ${t_r} = {S_n} - {S_{n - 1}}$. write $\dfrac{1}{{{t_r}}}$ and arrange them in suitable form then apply $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $ and we will get that the successive terms cancel each others.
Complete step-by-step solution:
Here, it is given that ${S_n} = \sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ .
Now, we can find the term ${t_n}$ using the above given formula.
$
\Rightarrow {t_n} = {S_n} - {S_{n - 1}} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)\left( {n + 1 - 1} \right)\left( {n + 2 - 1} \right)\left( {n + 3 - 1} \right)}}{8} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}
$
Here, it is clearly visible that $\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}$ is present in both the terms so, we can take this as common and we can write,
$
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}\left( {\left( {n + 3} \right) - \left( {n - 1} \right)} \right) \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{2}
$
So, ${r^{th}}$ term of the required expression is ${t_r} = \dfrac{{r\left( {r + 1} \right)\left( {r + 2} \right)}}{2}$.
Now, we have to find the value of $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $. So, firstly write,
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We have to add and subtract $2$ in the numerator of the term $\dfrac{1}{{{t_r}}}$ so that this can be converted into suitable formats.
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{{\left( {r + 2} \right) - r}}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We can write this as the difference of two fractions. That is
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
So, $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
Here, we have to find the summation of $n$ terms, so we have to put the value of $r$ from $1$ to $n$.
$\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{1\left( {1 + 1} \right)}} - \dfrac{1}{{\left( {1 + 1} \right)\left( {1 + 2} \right)}} + \dfrac{1}{{2 \times 3}} - \dfrac{1}{{3 \times 4}} - - - - - - - - + \dfrac{1}{{n\left( {n + 1} \right)}} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}$
It is clearly visible that ${2^{nd}}$ and ${3^{rd}}$ terms are cancelling each other and similarly next two terms cancel each other and finally only the first and last terms will be remaining. This imply
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}} = \dfrac{1}{2} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}} $
Taking $ - 1$ as common we can write,
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
Thus, option (A) is the correct answer.
Note: While solving the problem of summation of sequences and series we have to first write ${r^{th}}$ term and then convert this into suitable form so that except some terms others are cancelled out.
If the denominator of ${r^{th}}$term is cubic like \[\dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}\] we can write
$ \Rightarrow \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}} = \dfrac{A}{n} + \dfrac{B}{{n + 1}} + \dfrac{C}{{n + 2}}$ and by equating on both side of equation we can get the value of $A,B$ and $C$ and then do summation as shown above.
Complete step-by-step solution:
Here, it is given that ${S_n} = \sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ .
Now, we can find the term ${t_n}$ using the above given formula.
$
\Rightarrow {t_n} = {S_n} - {S_{n - 1}} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)\left( {n + 1 - 1} \right)\left( {n + 2 - 1} \right)\left( {n + 3 - 1} \right)}}{8} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}
$
Here, it is clearly visible that $\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}$ is present in both the terms so, we can take this as common and we can write,
$
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}\left( {\left( {n + 3} \right) - \left( {n - 1} \right)} \right) \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{2}
$
So, ${r^{th}}$ term of the required expression is ${t_r} = \dfrac{{r\left( {r + 1} \right)\left( {r + 2} \right)}}{2}$.
Now, we have to find the value of $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $. So, firstly write,
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We have to add and subtract $2$ in the numerator of the term $\dfrac{1}{{{t_r}}}$ so that this can be converted into suitable formats.
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{{\left( {r + 2} \right) - r}}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We can write this as the difference of two fractions. That is
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
So, $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
Here, we have to find the summation of $n$ terms, so we have to put the value of $r$ from $1$ to $n$.
$\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{1\left( {1 + 1} \right)}} - \dfrac{1}{{\left( {1 + 1} \right)\left( {1 + 2} \right)}} + \dfrac{1}{{2 \times 3}} - \dfrac{1}{{3 \times 4}} - - - - - - - - + \dfrac{1}{{n\left( {n + 1} \right)}} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}$
It is clearly visible that ${2^{nd}}$ and ${3^{rd}}$ terms are cancelling each other and similarly next two terms cancel each other and finally only the first and last terms will be remaining. This imply
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}} = \dfrac{1}{2} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}} $
Taking $ - 1$ as common we can write,
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
Thus, option (A) is the correct answer.
Note: While solving the problem of summation of sequences and series we have to first write ${r^{th}}$ term and then convert this into suitable form so that except some terms others are cancelled out.
If the denominator of ${r^{th}}$term is cubic like \[\dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}\] we can write
$ \Rightarrow \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}} = \dfrac{A}{n} + \dfrac{B}{{n + 1}} + \dfrac{C}{{n + 2}}$ and by equating on both side of equation we can get the value of $A,B$ and $C$ and then do summation as shown above.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

