
If $\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ , then $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $ equals
(A) $ - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
(B) $\left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
(C) $\left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} + \dfrac{1}{2}} \right)$
(D) $\left( {\dfrac{1}{{\left( {n - 1} \right)\left( {n - 2} \right)}} + \dfrac{1}{2}} \right)$
Answer
466.8k+ views
Hint: Here, the sum of $n$ consecutive terms of an expression is given as $\sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$. We have to firstly find the term ${t_r}$ by using formula ${t_r} = {S_n} - {S_{n - 1}}$. write $\dfrac{1}{{{t_r}}}$ and arrange them in suitable form then apply $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $ and we will get that the successive terms cancel each others.
Complete step-by-step solution:
Here, it is given that ${S_n} = \sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ .
Now, we can find the term ${t_n}$ using the above given formula.
$
\Rightarrow {t_n} = {S_n} - {S_{n - 1}} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)\left( {n + 1 - 1} \right)\left( {n + 2 - 1} \right)\left( {n + 3 - 1} \right)}}{8} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}
$
Here, it is clearly visible that $\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}$ is present in both the terms so, we can take this as common and we can write,
$
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}\left( {\left( {n + 3} \right) - \left( {n - 1} \right)} \right) \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{2}
$
So, ${r^{th}}$ term of the required expression is ${t_r} = \dfrac{{r\left( {r + 1} \right)\left( {r + 2} \right)}}{2}$.
Now, we have to find the value of $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $. So, firstly write,
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We have to add and subtract $2$ in the numerator of the term $\dfrac{1}{{{t_r}}}$ so that this can be converted into suitable formats.
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{{\left( {r + 2} \right) - r}}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We can write this as the difference of two fractions. That is
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
So, $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
Here, we have to find the summation of $n$ terms, so we have to put the value of $r$ from $1$ to $n$.
$\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{1\left( {1 + 1} \right)}} - \dfrac{1}{{\left( {1 + 1} \right)\left( {1 + 2} \right)}} + \dfrac{1}{{2 \times 3}} - \dfrac{1}{{3 \times 4}} - - - - - - - - + \dfrac{1}{{n\left( {n + 1} \right)}} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}$
It is clearly visible that ${2^{nd}}$ and ${3^{rd}}$ terms are cancelling each other and similarly next two terms cancel each other and finally only the first and last terms will be remaining. This imply
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}} = \dfrac{1}{2} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}} $
Taking $ - 1$ as common we can write,
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
Thus, option (A) is the correct answer.
Note: While solving the problem of summation of sequences and series we have to first write ${r^{th}}$ term and then convert this into suitable form so that except some terms others are cancelled out.
If the denominator of ${r^{th}}$term is cubic like \[\dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}\] we can write
$ \Rightarrow \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}} = \dfrac{A}{n} + \dfrac{B}{{n + 1}} + \dfrac{C}{{n + 2}}$ and by equating on both side of equation we can get the value of $A,B$ and $C$ and then do summation as shown above.
Complete step-by-step solution:
Here, it is given that ${S_n} = \sum\limits_{r = 1}^n {{t_r}} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8}$ .
Now, we can find the term ${t_n}$ using the above given formula.
$
\Rightarrow {t_n} = {S_n} - {S_{n - 1}} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)\left( {n + 1 - 1} \right)\left( {n + 2 - 1} \right)\left( {n + 3 - 1} \right)}}{8} \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{8} - \dfrac{{\left( {n - 1} \right)n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}
$
Here, it is clearly visible that $\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}$ is present in both the terms so, we can take this as common and we can write,
$
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{8}\left( {\left( {n + 3} \right) - \left( {n - 1} \right)} \right) \\
\Rightarrow {t_n} = \dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)}}{2}
$
So, ${r^{th}}$ term of the required expression is ${t_r} = \dfrac{{r\left( {r + 1} \right)\left( {r + 2} \right)}}{2}$.
Now, we have to find the value of $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} $. So, firstly write,
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We have to add and subtract $2$ in the numerator of the term $\dfrac{1}{{{t_r}}}$ so that this can be converted into suitable formats.
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{{\left( {r + 2} \right) - r}}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}$
We can write this as the difference of two fractions. That is
$ \Rightarrow \dfrac{1}{{{t_r}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
So, $\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{r\left( {r + 1} \right)}} - \dfrac{1}{{\left( {r + 1} \right)\left( {r + 2} \right)}}$
Here, we have to find the summation of $n$ terms, so we have to put the value of $r$ from $1$ to $n$.
$\sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = \dfrac{1}{{1\left( {1 + 1} \right)}} - \dfrac{1}{{\left( {1 + 1} \right)\left( {1 + 2} \right)}} + \dfrac{1}{{2 \times 3}} - \dfrac{1}{{3 \times 4}} - - - - - - - - + \dfrac{1}{{n\left( {n + 1} \right)}} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}$
It is clearly visible that ${2^{nd}}$ and ${3^{rd}}$ terms are cancelling each other and similarly next two terms cancel each other and finally only the first and last terms will be remaining. This imply
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}} = \dfrac{1}{2} - \dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}}} $
Taking $ - 1$ as common we can write,
$ \Rightarrow \sum\limits_{r = 1}^n {\dfrac{1}{{{t_r}}}} = - \left( {\dfrac{1}{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \dfrac{1}{2}} \right)$
Thus, option (A) is the correct answer.
Note: While solving the problem of summation of sequences and series we have to first write ${r^{th}}$ term and then convert this into suitable form so that except some terms others are cancelled out.
If the denominator of ${r^{th}}$term is cubic like \[\dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}}\] we can write
$ \Rightarrow \dfrac{2}{{r\left( {r + 1} \right)\left( {r + 2} \right)}} = \dfrac{A}{n} + \dfrac{B}{{n + 1}} + \dfrac{C}{{n + 2}}$ and by equating on both side of equation we can get the value of $A,B$ and $C$ and then do summation as shown above.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
