
If sum of n terms of an A.P is \[{\text{3 - 4n}}\], find, the common difference.
Answer
592.2k+ views
Hint: As we know that nth term of an A.P can be calculated as \[{{\text{T}}_{\text{n}}}{\text{ = }}{{\text{S}}_{\text{n}}}{\text{ - }}{{\text{S}}_{{\text{n - 1}}}}\]. And so as we know \[{{\text{S}}_{\text{n}}}\] as per given in the question. So, we calculate \[{{\text{S}}_1}{\text{,}}{{\text{S}}_2}\]and their difference will give us the second term, and then on subtraction of first term from second term we get our answer.
Complete step by step answer:
As per the given , \[{{\text{S}}_{\text{n}}}{\text{ = 3 - 4n}}\]
So, we first calculate \[{{\text{S}}_1}{\text{ and }}{{\text{S}}_2}\],
\[
{{\text{S}}_1}{\text{ = 3 - 4(1) = - 1,}} \\
{{\text{S}}_2} = 3 - 4(2) = - 5 \\
\]
Now we find \[{{\text{S}}_2} - {{\text{S}}_1}\],
\[ \Rightarrow {{\text{S}}_2} - {{\text{S}}_1} = - 5 - ( - 1) = - 4\]
So we have \[{{\text{S}}_1}{\text{ = - 1 = }}{{\text{a}}_1}\] and \[{{\text{S}}_2}{\text{ = - 4 = }}{{\text{a}}_2}\].
So, difference will be \[{{\text{a}}_{\text{2}}}{\text{ - }}{{\text{a}}_{\text{1}}}{\text{ = - 4 - ( - 1) = - 3}}\]
Hence , \[{\text{ - 3}}\] is our required answer.
Note: In mathematics, an arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
Properties of Arithmetic Progressions
1)If the same number is added or subtracted from each term of an A.P, then the resulting terms in the sequence are also in A.P with the same common difference.
2)If each term in an A.P is divided or multiplied with the same non-zero number, then the resulting sequence is also in an A.P.
Complete step by step answer:
As per the given , \[{{\text{S}}_{\text{n}}}{\text{ = 3 - 4n}}\]
So, we first calculate \[{{\text{S}}_1}{\text{ and }}{{\text{S}}_2}\],
\[
{{\text{S}}_1}{\text{ = 3 - 4(1) = - 1,}} \\
{{\text{S}}_2} = 3 - 4(2) = - 5 \\
\]
Now we find \[{{\text{S}}_2} - {{\text{S}}_1}\],
\[ \Rightarrow {{\text{S}}_2} - {{\text{S}}_1} = - 5 - ( - 1) = - 4\]
So we have \[{{\text{S}}_1}{\text{ = - 1 = }}{{\text{a}}_1}\] and \[{{\text{S}}_2}{\text{ = - 4 = }}{{\text{a}}_2}\].
So, difference will be \[{{\text{a}}_{\text{2}}}{\text{ - }}{{\text{a}}_{\text{1}}}{\text{ = - 4 - ( - 1) = - 3}}\]
Hence , \[{\text{ - 3}}\] is our required answer.
Note: In mathematics, an arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
Properties of Arithmetic Progressions
1)If the same number is added or subtracted from each term of an A.P, then the resulting terms in the sequence are also in A.P with the same common difference.
2)If each term in an A.P is divided or multiplied with the same non-zero number, then the resulting sequence is also in an A.P.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

