Answer
Verified
446.1k+ views
Hint: As we know that nth term of an A.P can be calculated as \[{{\text{T}}_{\text{n}}}{\text{ = }}{{\text{S}}_{\text{n}}}{\text{ - }}{{\text{S}}_{{\text{n - 1}}}}\]. And so as we know \[{{\text{S}}_{\text{n}}}\] as per given in the question. So, we calculate \[{{\text{S}}_1}{\text{,}}{{\text{S}}_2}\]and their difference will give us the second term, and then on subtraction of first term from second term we get our answer.
Complete step by step answer:
As per the given , \[{{\text{S}}_{\text{n}}}{\text{ = 3 - 4n}}\]
So, we first calculate \[{{\text{S}}_1}{\text{ and }}{{\text{S}}_2}\],
\[
{{\text{S}}_1}{\text{ = 3 - 4(1) = - 1,}} \\
{{\text{S}}_2} = 3 - 4(2) = - 5 \\
\]
Now we find \[{{\text{S}}_2} - {{\text{S}}_1}\],
\[ \Rightarrow {{\text{S}}_2} - {{\text{S}}_1} = - 5 - ( - 1) = - 4\]
So we have \[{{\text{S}}_1}{\text{ = - 1 = }}{{\text{a}}_1}\] and \[{{\text{S}}_2}{\text{ = - 4 = }}{{\text{a}}_2}\].
So, difference will be \[{{\text{a}}_{\text{2}}}{\text{ - }}{{\text{a}}_{\text{1}}}{\text{ = - 4 - ( - 1) = - 3}}\]
Hence , \[{\text{ - 3}}\] is our required answer.
Note: In mathematics, an arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
Properties of Arithmetic Progressions
1)If the same number is added or subtracted from each term of an A.P, then the resulting terms in the sequence are also in A.P with the same common difference.
2)If each term in an A.P is divided or multiplied with the same non-zero number, then the resulting sequence is also in an A.P.
Complete step by step answer:
As per the given , \[{{\text{S}}_{\text{n}}}{\text{ = 3 - 4n}}\]
So, we first calculate \[{{\text{S}}_1}{\text{ and }}{{\text{S}}_2}\],
\[
{{\text{S}}_1}{\text{ = 3 - 4(1) = - 1,}} \\
{{\text{S}}_2} = 3 - 4(2) = - 5 \\
\]
Now we find \[{{\text{S}}_2} - {{\text{S}}_1}\],
\[ \Rightarrow {{\text{S}}_2} - {{\text{S}}_1} = - 5 - ( - 1) = - 4\]
So we have \[{{\text{S}}_1}{\text{ = - 1 = }}{{\text{a}}_1}\] and \[{{\text{S}}_2}{\text{ = - 4 = }}{{\text{a}}_2}\].
So, difference will be \[{{\text{a}}_{\text{2}}}{\text{ - }}{{\text{a}}_{\text{1}}}{\text{ = - 4 - ( - 1) = - 3}}\]
Hence , \[{\text{ - 3}}\] is our required answer.
Note: In mathematics, an arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant.
Properties of Arithmetic Progressions
1)If the same number is added or subtracted from each term of an A.P, then the resulting terms in the sequence are also in A.P with the same common difference.
2)If each term in an A.P is divided or multiplied with the same non-zero number, then the resulting sequence is also in an A.P.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE