Answer
Verified
445.2k+ views
Hint: When two lines, one real axis and the other imaginary axis passes perpendicular through a circle, the circle is divided into four quadrants. Into quadrant I, where both x and y-axis are positive, Quadrant II, here x-axis is negative, and the y-axis is positive, Quadrant III here both the x-axis and y-axis are negative, and in Quadrant IV x-axis is positive, and the y-axis is negative.
In the case of the trigonometric functions in quadrant I, all the functions are positive, in Quadrant II, Sin and Cosec functions are positive, and other functions are negative, in Quadrant III, tan and cot functions are positive and other are negative, and in the case of Quadrant IV, Cos and Sec functions are positive and other being negative.
Complete step by step solution: \[\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}} = \sec A + \tan A\]
One of the methods to remove the square root is the rationalization where the numerator and the denominator are multiplied by the same rational number; hence we will rationalize the LHS of the given function:
\[
\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}} = \sqrt {\dfrac{{\left( {1 + \sin A} \right)\left( {1 + \sin A} \right)}}{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}}} \\
= \sqrt {\dfrac{{{{\left( {1 + \sin A} \right)}^2}}}{{\left( {1 - {{\sin }^2}A} \right)}}} \\
= \dfrac{{\left( {1 + \sin A} \right)}}{{\sqrt {\left( {{{\cos }^2}A} \right)} }}{\text{ }}\left[ {\because {{\sin }^2}A + {{\cos }^2}A = 1} \right] \\
= \dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} \\
\]
Hence, we have got the LHS as: \[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}}\]
We know\[\sqrt {\left( {{{\cos }^2}A} \right)} = \left| {\cos A} \right| = \pm \cos A\], hence we put the value \[ + \cos A\]and \[ - \cos A\]to check the function:
\[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} = \dfrac{1}{{ + \cos A}} + \dfrac{{\sin A}}{{ + \cos A}} = \sec A + \tan A - - - - (i)\]
\[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} = \dfrac{1}{{ - \cos A}} + \dfrac{{\sin A}}{{ - \cos A}} = - \sec A - \tan A - - - - (ii)\]
Hence we can see in equation (i) \[ + \cos A\] satisfy the given equation, \[\cos A\] is positive only in quadrant I and quadrant IV.
Option C is correct.
Note: The co-function identities show the relationship between the sin, cos, tan, cosine, sec, and cot function. The value of the trigonometric function for an angle is equal to the value of the cofunction of the complement.
In the case of the trigonometric functions in quadrant I, all the functions are positive, in Quadrant II, Sin and Cosec functions are positive, and other functions are negative, in Quadrant III, tan and cot functions are positive and other are negative, and in the case of Quadrant IV, Cos and Sec functions are positive and other being negative.
Complete step by step solution: \[\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}} = \sec A + \tan A\]
One of the methods to remove the square root is the rationalization where the numerator and the denominator are multiplied by the same rational number; hence we will rationalize the LHS of the given function:
\[
\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}} = \sqrt {\dfrac{{\left( {1 + \sin A} \right)\left( {1 + \sin A} \right)}}{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}}} \\
= \sqrt {\dfrac{{{{\left( {1 + \sin A} \right)}^2}}}{{\left( {1 - {{\sin }^2}A} \right)}}} \\
= \dfrac{{\left( {1 + \sin A} \right)}}{{\sqrt {\left( {{{\cos }^2}A} \right)} }}{\text{ }}\left[ {\because {{\sin }^2}A + {{\cos }^2}A = 1} \right] \\
= \dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} \\
\]
Hence, we have got the LHS as: \[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}}\]
We know\[\sqrt {\left( {{{\cos }^2}A} \right)} = \left| {\cos A} \right| = \pm \cos A\], hence we put the value \[ + \cos A\]and \[ - \cos A\]to check the function:
\[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} = \dfrac{1}{{ + \cos A}} + \dfrac{{\sin A}}{{ + \cos A}} = \sec A + \tan A - - - - (i)\]
\[\dfrac{{\left( {1 + \sin A} \right)}}{{\left| {\cos A} \right|}} = \dfrac{1}{{ - \cos A}} + \dfrac{{\sin A}}{{ - \cos A}} = - \sec A - \tan A - - - - (ii)\]
Hence we can see in equation (i) \[ + \cos A\] satisfy the given equation, \[\cos A\] is positive only in quadrant I and quadrant IV.
Option C is correct.
Note: The co-function identities show the relationship between the sin, cos, tan, cosine, sec, and cot function. The value of the trigonometric function for an angle is equal to the value of the cofunction of the complement.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE