
If ${{S}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{1}{^{n}{{C}_{r}}}}$ and ${{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{r}{^{n}{{C}_{r}}}}$, then $\dfrac{{{t}_{n}}}{{{S}_{n}}}$ is equal to
(a) $\dfrac{n}{2}$
(b) $\dfrac{n}{2}-1$
(c) n – 1
(d) $\dfrac{2n-1}{2}$
Answer
569.7k+ views
Hint: To solve this question, we will try to write one of the two given equations in the form of another. To do this, we have to perform some manipulations of equations. Moreover, we will also need the definition of $^{n}{{C}_{r}}$, which is defined as $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ and n! = n(n – 1)(n – 2) … 1. We shall also keep in mind that $^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$. With all these things, we shall be able to find the value of $\dfrac{{{t}_{n}}}{{{S}_{n}}}$.
Complete step by step answer:
It is given to us that ${{S}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{1}{^{n}{{C}_{r}}}}$ and ${{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{r}{^{n}{{C}_{r}}}}$.
First of all, we will consider ${{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{r}{^{n}{{C}_{r}}}}$.
If we add and subtract n in the numerator, the value of the equation will not change. Thus, we will change the numerator r with n – (n – r).
The changed value of ${{t}_{n}}$ will be as follows:
$\begin{align}
& \Rightarrow {{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{n-\left( n-r \right)}{^{n}{{C}_{r}}}} \\
& \Rightarrow {{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{n}{^{n}{{C}_{r}}}-\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}} \\
\end{align}$
We know that $\sum{\left( a+b \right)=\sum{a}+\sum{b}}$.
We will apply this rule in the equation of ${{t}_{n}}$.
$\Rightarrow {{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{n}{^{n}{{C}_{r}}}}-\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}}$
We know that the value of n is constant and thus can be taken out of the summation.
$\Rightarrow {{t}_{n}}=n\sum\limits_{r=0}^{n}{\dfrac{1}{^{n}{{C}_{r}}}}-\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}}$
But it is given to us that ${{S}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{1}{^{n}{{C}_{r}}}}$.
$\Rightarrow {{t}_{n}}=n{{S}_{n}}-\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}}......\left( 1 \right)$
Now, let us expand the right hand side of ${{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{r}{^{n}{{C}_{r}}}}$.
\[\Rightarrow {{t}_{n}}=\dfrac{0}{^{n}{{C}_{0}}}+\dfrac{1}{^{n}{{C}_{1}}}+\dfrac{2}{^{n}{{C}_{2}}}+...+\dfrac{n}{^{n}{{C}_{n}}}......\left( 2 \right)\]
Also, let us assume that ${{A}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}}$.
From the properties of $^{n}{{C}_{r}}$, we know that $^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$.
Thus, we will replace the $^{n}{{C}_{r}}$ in the denominator with ${}^{n}{{C}_{n-r}}$.
$\Rightarrow {{A}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{n-r}}}}$
We will now expand the right hand side of ${{A}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{n-r}}}}$.
$\begin{align}
& \Rightarrow {{A}_{n}}=\dfrac{n}{^{n}{{C}_{n}}}+\dfrac{n-1}{^{n}{{C}_{n-1}}}+...+\dfrac{n-\left( n-1 \right)}{^{n}{{C}_{n-\left( n-1 \right)}}}+\dfrac{n-n}{^{n}{{C}_{n-n}}} \\
& \Rightarrow {{A}_{n}}=\dfrac{n}{^{n}{{C}_{n}}}+\dfrac{n-1}{^{n}{{C}_{n-1}}}+...+\dfrac{1}{^{n}{{C}_{1}}}+\dfrac{0}{^{n}{{C}_{0}}}......\left( 3 \right) \\
\end{align}$
When we compare (2) and (3), we can observe first term of (2) is same as the last term of (3), second term of (2) is same as second last term of (3) and last term of (2) is same as the first term of (2). This means that (2) = (3)
$\Rightarrow {{t}_{n}}={{A}_{n}}$
Thus, we will replace $\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}}={{A}_{n}}$ with ${{t}_{n}}$ in the equation (1).
$\begin{align}
& \Rightarrow {{t}_{n}}=n{{S}_{n}}-{{t}_{n}} \\
& \Rightarrow 2{{t}_{n}}=n{{S}_{n}} \\
& \Rightarrow \dfrac{{{t}_{n}}}{{{S}_{n}}}=\dfrac{n}{2} \\
\end{align}$
So, the correct answer is “Option A”.
Note: This question involves basic understanding of the summation and problem-solving method. Another simpler method to solve this question is take some arbitrary value for n and solve the problem numerically. The value of n must be greater than 0 and it must be so that every option is unique. For example, n cannot be 2, as with n = 2, option (a) and option (c) will be the same. The value of n can be 4, as with n = 4, every option yields different values.
Complete step by step answer:
It is given to us that ${{S}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{1}{^{n}{{C}_{r}}}}$ and ${{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{r}{^{n}{{C}_{r}}}}$.
First of all, we will consider ${{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{r}{^{n}{{C}_{r}}}}$.
If we add and subtract n in the numerator, the value of the equation will not change. Thus, we will change the numerator r with n – (n – r).
The changed value of ${{t}_{n}}$ will be as follows:
$\begin{align}
& \Rightarrow {{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{n-\left( n-r \right)}{^{n}{{C}_{r}}}} \\
& \Rightarrow {{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{n}{^{n}{{C}_{r}}}-\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}} \\
\end{align}$
We know that $\sum{\left( a+b \right)=\sum{a}+\sum{b}}$.
We will apply this rule in the equation of ${{t}_{n}}$.
$\Rightarrow {{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{n}{^{n}{{C}_{r}}}}-\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}}$
We know that the value of n is constant and thus can be taken out of the summation.
$\Rightarrow {{t}_{n}}=n\sum\limits_{r=0}^{n}{\dfrac{1}{^{n}{{C}_{r}}}}-\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}}$
But it is given to us that ${{S}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{1}{^{n}{{C}_{r}}}}$.
$\Rightarrow {{t}_{n}}=n{{S}_{n}}-\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}}......\left( 1 \right)$
Now, let us expand the right hand side of ${{t}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{r}{^{n}{{C}_{r}}}}$.
\[\Rightarrow {{t}_{n}}=\dfrac{0}{^{n}{{C}_{0}}}+\dfrac{1}{^{n}{{C}_{1}}}+\dfrac{2}{^{n}{{C}_{2}}}+...+\dfrac{n}{^{n}{{C}_{n}}}......\left( 2 \right)\]
Also, let us assume that ${{A}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}}$.
From the properties of $^{n}{{C}_{r}}$, we know that $^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$.
Thus, we will replace the $^{n}{{C}_{r}}$ in the denominator with ${}^{n}{{C}_{n-r}}$.
$\Rightarrow {{A}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{n-r}}}}$
We will now expand the right hand side of ${{A}_{n}}=\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{n-r}}}}$.
$\begin{align}
& \Rightarrow {{A}_{n}}=\dfrac{n}{^{n}{{C}_{n}}}+\dfrac{n-1}{^{n}{{C}_{n-1}}}+...+\dfrac{n-\left( n-1 \right)}{^{n}{{C}_{n-\left( n-1 \right)}}}+\dfrac{n-n}{^{n}{{C}_{n-n}}} \\
& \Rightarrow {{A}_{n}}=\dfrac{n}{^{n}{{C}_{n}}}+\dfrac{n-1}{^{n}{{C}_{n-1}}}+...+\dfrac{1}{^{n}{{C}_{1}}}+\dfrac{0}{^{n}{{C}_{0}}}......\left( 3 \right) \\
\end{align}$
When we compare (2) and (3), we can observe first term of (2) is same as the last term of (3), second term of (2) is same as second last term of (3) and last term of (2) is same as the first term of (2). This means that (2) = (3)
$\Rightarrow {{t}_{n}}={{A}_{n}}$
Thus, we will replace $\sum\limits_{r=0}^{n}{\dfrac{\left( n-r \right)}{^{n}{{C}_{r}}}}={{A}_{n}}$ with ${{t}_{n}}$ in the equation (1).
$\begin{align}
& \Rightarrow {{t}_{n}}=n{{S}_{n}}-{{t}_{n}} \\
& \Rightarrow 2{{t}_{n}}=n{{S}_{n}} \\
& \Rightarrow \dfrac{{{t}_{n}}}{{{S}_{n}}}=\dfrac{n}{2} \\
\end{align}$
So, the correct answer is “Option A”.
Note: This question involves basic understanding of the summation and problem-solving method. Another simpler method to solve this question is take some arbitrary value for n and solve the problem numerically. The value of n must be greater than 0 and it must be so that every option is unique. For example, n cannot be 2, as with n = 2, option (a) and option (c) will be the same. The value of n can be 4, as with n = 4, every option yields different values.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

