# $

{\text{If sin}}\theta {\text{, cos}}\theta {\text{ and tan}}\theta {\text{ are in G}}{\text{.P}}{\text{. then co}}{{\text{t}}^6}\theta - {\cot ^2}\theta {\text{ is}} \\

{\text{A}}{\text{. 1}} \\

{\text{B}}{\text{. }}\dfrac{1}{2} \\

{\text{C}}{\text{. 2}} \\

{\text{D}}{\text{. 3}} \\

$

Answer

Verified

367.8k+ views

$

\\

{\text{We know that when }}a,{\text{ }}b,{\text{ }}c{\text{ are in GP then }} \\

\Rightarrow {b^2} = a \cdot c \\

{\text{here sin}}\theta {\text{, cos}}\theta {\text{ and tan}}\theta {\text{ are in gp}} \\

\Rightarrow {\text{co}}{{\text{s}}^2}\theta = \sin \theta \cdot \tan \theta \\

{\text{ = sin}}\theta \cdot \dfrac{{\sin \theta }}{{\cos \theta }} \\

\Rightarrow \dfrac{{{\text{co}}{{\text{s}}^2}\theta }}{{{\text{si}}{{\text{n}}^2}\theta }} = \dfrac{1}{{\cos \theta }}{\text{ }} \Rightarrow \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} = 1{\text{ }}........{\text{(i)}} \\

\Rightarrow {\cot ^2}\theta = \sec \theta \\

{\text{Now put the value of }}{\cot ^2}\theta {\text{ in the question}} \\

\Rightarrow {\cot ^6}\theta - {\cot ^2}\theta = {\sec ^3}\theta - \sec \theta \\

{\text{ = }}\sec \theta ({\sec ^2}\theta - 1) \\

{\text{ = }}\sec \theta \cdot {\tan ^2}\theta \\

{\text{ = }}\dfrac{1}{{\cos \theta }} \cdot \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} \\

{\text{ = }}\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} \\

{\text{By putting the value in equation (i)}} \\

{\cot ^6}\theta - {\cot ^2}\theta = 1{\text{ }} \\

{\text{So option A is correct}}{\text{.}} \\

{\text{Note: - Always try to use geometric mean when three consecutive term of a GP are given}}{\text{. }} \\

{\text{these are the best method to solve the questions}}{\text{.}} \\

$

\\

{\text{We know that when }}a,{\text{ }}b,{\text{ }}c{\text{ are in GP then }} \\

\Rightarrow {b^2} = a \cdot c \\

{\text{here sin}}\theta {\text{, cos}}\theta {\text{ and tan}}\theta {\text{ are in gp}} \\

\Rightarrow {\text{co}}{{\text{s}}^2}\theta = \sin \theta \cdot \tan \theta \\

{\text{ = sin}}\theta \cdot \dfrac{{\sin \theta }}{{\cos \theta }} \\

\Rightarrow \dfrac{{{\text{co}}{{\text{s}}^2}\theta }}{{{\text{si}}{{\text{n}}^2}\theta }} = \dfrac{1}{{\cos \theta }}{\text{ }} \Rightarrow \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} = 1{\text{ }}........{\text{(i)}} \\

\Rightarrow {\cot ^2}\theta = \sec \theta \\

{\text{Now put the value of }}{\cot ^2}\theta {\text{ in the question}} \\

\Rightarrow {\cot ^6}\theta - {\cot ^2}\theta = {\sec ^3}\theta - \sec \theta \\

{\text{ = }}\sec \theta ({\sec ^2}\theta - 1) \\

{\text{ = }}\sec \theta \cdot {\tan ^2}\theta \\

{\text{ = }}\dfrac{1}{{\cos \theta }} \cdot \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} \\

{\text{ = }}\dfrac{{{{\sin }^2}\theta }}{{{{\cos }^3}\theta }} \\

{\text{By putting the value in equation (i)}} \\

{\cot ^6}\theta - {\cot ^2}\theta = 1{\text{ }} \\

{\text{So option A is correct}}{\text{.}} \\

{\text{Note: - Always try to use geometric mean when three consecutive term of a GP are given}}{\text{. }} \\

{\text{these are the best method to solve the questions}}{\text{.}} \\

$

Last updated date: 22nd Sep 2023

â€¢

Total views: 367.8k

â€¢

Views today: 4.67k