Answer
Verified
445.8k+ views
Hint: Try using the equation given to us,$\text{sinA}\ \text{+}\ \text{si}{{\text{n}}^{2}}\text{A+si}{{\text{n}}^{3}}\text{A=1,}$you can use the basic trigonometry property, ${{\sin }^{2}}\text{A}\ \text{+}\ \text{co}{{\text{s}}^{2}}\text{A}\ \text{=}\ \text{1,}$ which will be helpful in getting to the solution.
Complete step-by-step answer:
We need to find the value of ${{\cos }^{6}}\text{A}\ \text{- 4co}{{\text{s}}^{4}}\text{A}\ \text{+}\ \text{8co}{{\text{s}}^{2}}\text{A}\text{.}$ Let us use the equation given to us.
$\Rightarrow \ \sin \text{A}\ \text{+}\ \text{si}{{\text{n}}^{2}}\text{A}\ \text{+}\ \text{si}{{\text{n}}^{3}}\text{A}\ \text{=1}$
Taking ${{\sin }^{2}}\text{A}$ to the right hand side,
$\Rightarrow \ \text{sinA}\ \text{+}\ \text{si}{{\text{n}}^{\text{3}}}\text{A}\ \text{=}\ \text{1}\ \text{-}\ \text{si}{{\text{n}}^{\text{2}}}\text{A}$
$\Rightarrow \ \text{sinA}\left( 1+\text{si}{{\text{n}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
Here we can substitute the value of $\text{si}{{\text{n}}^{\text{2}}}\text{A}\ \ \ \text{as}\ \ \ \ \text{1-}\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
Therefore we will get,
$\text{sinA}\ \left( 1+1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
$\text{sinA}\left( 2-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)={{\cos }^{2}}\left( \text{A} \right)$
Now squatting on both the sides,
$\text{si}{{\text{n}}^{\text{2}}}\text{A}{{\left( 2-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)}^{2}}\ =\ {{\cos }^{4}}A$
Again we can replace $\text{si}{{\text{n}}^{\text{2}}}\text{A}\ \text{by}\ \left( 1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)$
$\Rightarrow \ \left( 1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)\left( 4+\text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{4}}}\text{A}$
$\Rightarrow \ \text{4+co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{-}\ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{+}\ \text{4cos}{{\text{A}}^{\text{4}}}\text{A}\ \text{=}\ \text{co}{{\text{s}}^{\text{4}}}\text{A}$
Taking all the $\cos $ terms on are side,
$\text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{+4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{+}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{+}\ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{-4co}{{\text{s}}^{\text{4}}}\text{A}\ \text{=}\ \text{4}$
$\Rightarrow \ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{4}}}\text{A}\ \text{+}\ \text{8co}{{\text{s}}^{\text{2}}}\text{A}\ \text{=}\ \text{4}$
Hence, our answer will be 4.
Note: In such questions rearrangement of the given equation always leads us to the desired equation. Carefully verify each step before moving into the next step. Additionally some basic trigonometric ideates to keep in mind would be,
${{\sin }^{2}}\theta \ +{{\cos }^{2}}\theta =1$
${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $
${{\cot }^{2}}\theta +1=\text{cose}{{\text{c}}^{\text{2}}}\theta $.
Complete step-by-step answer:
We need to find the value of ${{\cos }^{6}}\text{A}\ \text{- 4co}{{\text{s}}^{4}}\text{A}\ \text{+}\ \text{8co}{{\text{s}}^{2}}\text{A}\text{.}$ Let us use the equation given to us.
$\Rightarrow \ \sin \text{A}\ \text{+}\ \text{si}{{\text{n}}^{2}}\text{A}\ \text{+}\ \text{si}{{\text{n}}^{3}}\text{A}\ \text{=1}$
Taking ${{\sin }^{2}}\text{A}$ to the right hand side,
$\Rightarrow \ \text{sinA}\ \text{+}\ \text{si}{{\text{n}}^{\text{3}}}\text{A}\ \text{=}\ \text{1}\ \text{-}\ \text{si}{{\text{n}}^{\text{2}}}\text{A}$
$\Rightarrow \ \text{sinA}\left( 1+\text{si}{{\text{n}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
Here we can substitute the value of $\text{si}{{\text{n}}^{\text{2}}}\text{A}\ \ \ \text{as}\ \ \ \ \text{1-}\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
Therefore we will get,
$\text{sinA}\ \left( 1+1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
$\text{sinA}\left( 2-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)={{\cos }^{2}}\left( \text{A} \right)$
Now squatting on both the sides,
$\text{si}{{\text{n}}^{\text{2}}}\text{A}{{\left( 2-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)}^{2}}\ =\ {{\cos }^{4}}A$
Again we can replace $\text{si}{{\text{n}}^{\text{2}}}\text{A}\ \text{by}\ \left( 1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)$
$\Rightarrow \ \left( 1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)\left( 4+\text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{4}}}\text{A}$
$\Rightarrow \ \text{4+co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{-}\ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{+}\ \text{4cos}{{\text{A}}^{\text{4}}}\text{A}\ \text{=}\ \text{co}{{\text{s}}^{\text{4}}}\text{A}$
Taking all the $\cos $ terms on are side,
$\text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{+4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{+}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{+}\ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{-4co}{{\text{s}}^{\text{4}}}\text{A}\ \text{=}\ \text{4}$
$\Rightarrow \ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{4}}}\text{A}\ \text{+}\ \text{8co}{{\text{s}}^{\text{2}}}\text{A}\ \text{=}\ \text{4}$
Hence, our answer will be 4.
Note: In such questions rearrangement of the given equation always leads us to the desired equation. Carefully verify each step before moving into the next step. Additionally some basic trigonometric ideates to keep in mind would be,
${{\sin }^{2}}\theta \ +{{\cos }^{2}}\theta =1$
${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $
${{\cot }^{2}}\theta +1=\text{cose}{{\text{c}}^{\text{2}}}\theta $.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE