
If $\text{sinA}\ \text{+}\ \text{si}{{\text{n}}^{2}}\text{A+si}{{\text{n}}^{3}}\text{A=1,}$ then find the value of ${{\cos }^{6}}\text{A}\ -\ 4{{\cos }^{4}}\text{A}\ \text{+}\ \text{8co}{{\text{s}}^{2}}\text{A}$is:-
A). 1.
B). 2.
C). 3.
D). 4
Answer
577.8k+ views
Hint: Try using the equation given to us,$\text{sinA}\ \text{+}\ \text{si}{{\text{n}}^{2}}\text{A+si}{{\text{n}}^{3}}\text{A=1,}$you can use the basic trigonometry property, ${{\sin }^{2}}\text{A}\ \text{+}\ \text{co}{{\text{s}}^{2}}\text{A}\ \text{=}\ \text{1,}$ which will be helpful in getting to the solution.
Complete step-by-step answer:
We need to find the value of ${{\cos }^{6}}\text{A}\ \text{- 4co}{{\text{s}}^{4}}\text{A}\ \text{+}\ \text{8co}{{\text{s}}^{2}}\text{A}\text{.}$ Let us use the equation given to us.
$\Rightarrow \ \sin \text{A}\ \text{+}\ \text{si}{{\text{n}}^{2}}\text{A}\ \text{+}\ \text{si}{{\text{n}}^{3}}\text{A}\ \text{=1}$
Taking ${{\sin }^{2}}\text{A}$ to the right hand side,
$\Rightarrow \ \text{sinA}\ \text{+}\ \text{si}{{\text{n}}^{\text{3}}}\text{A}\ \text{=}\ \text{1}\ \text{-}\ \text{si}{{\text{n}}^{\text{2}}}\text{A}$
$\Rightarrow \ \text{sinA}\left( 1+\text{si}{{\text{n}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
Here we can substitute the value of $\text{si}{{\text{n}}^{\text{2}}}\text{A}\ \ \ \text{as}\ \ \ \ \text{1-}\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
Therefore we will get,
$\text{sinA}\ \left( 1+1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
$\text{sinA}\left( 2-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)={{\cos }^{2}}\left( \text{A} \right)$
Now squatting on both the sides,
$\text{si}{{\text{n}}^{\text{2}}}\text{A}{{\left( 2-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)}^{2}}\ =\ {{\cos }^{4}}A$
Again we can replace $\text{si}{{\text{n}}^{\text{2}}}\text{A}\ \text{by}\ \left( 1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)$
$\Rightarrow \ \left( 1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)\left( 4+\text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{4}}}\text{A}$
$\Rightarrow \ \text{4+co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{-}\ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{+}\ \text{4cos}{{\text{A}}^{\text{4}}}\text{A}\ \text{=}\ \text{co}{{\text{s}}^{\text{4}}}\text{A}$
Taking all the $\cos $ terms on are side,
$\text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{+4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{+}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{+}\ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{-4co}{{\text{s}}^{\text{4}}}\text{A}\ \text{=}\ \text{4}$
$\Rightarrow \ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{4}}}\text{A}\ \text{+}\ \text{8co}{{\text{s}}^{\text{2}}}\text{A}\ \text{=}\ \text{4}$
Hence, our answer will be 4.
Note: In such questions rearrangement of the given equation always leads us to the desired equation. Carefully verify each step before moving into the next step. Additionally some basic trigonometric ideates to keep in mind would be,
${{\sin }^{2}}\theta \ +{{\cos }^{2}}\theta =1$
${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $
${{\cot }^{2}}\theta +1=\text{cose}{{\text{c}}^{\text{2}}}\theta $.
Complete step-by-step answer:
We need to find the value of ${{\cos }^{6}}\text{A}\ \text{- 4co}{{\text{s}}^{4}}\text{A}\ \text{+}\ \text{8co}{{\text{s}}^{2}}\text{A}\text{.}$ Let us use the equation given to us.
$\Rightarrow \ \sin \text{A}\ \text{+}\ \text{si}{{\text{n}}^{2}}\text{A}\ \text{+}\ \text{si}{{\text{n}}^{3}}\text{A}\ \text{=1}$
Taking ${{\sin }^{2}}\text{A}$ to the right hand side,
$\Rightarrow \ \text{sinA}\ \text{+}\ \text{si}{{\text{n}}^{\text{3}}}\text{A}\ \text{=}\ \text{1}\ \text{-}\ \text{si}{{\text{n}}^{\text{2}}}\text{A}$
$\Rightarrow \ \text{sinA}\left( 1+\text{si}{{\text{n}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
Here we can substitute the value of $\text{si}{{\text{n}}^{\text{2}}}\text{A}\ \ \ \text{as}\ \ \ \ \text{1-}\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
Therefore we will get,
$\text{sinA}\ \left( 1+1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{2}}}\text{A}$
$\text{sinA}\left( 2-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)={{\cos }^{2}}\left( \text{A} \right)$
Now squatting on both the sides,
$\text{si}{{\text{n}}^{\text{2}}}\text{A}{{\left( 2-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)}^{2}}\ =\ {{\cos }^{4}}A$
Again we can replace $\text{si}{{\text{n}}^{\text{2}}}\text{A}\ \text{by}\ \left( 1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)$
$\Rightarrow \ \left( 1-\text{co}{{\text{s}}^{\text{2}}}\text{A} \right)\left( 4+\text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A} \right)=\ \text{co}{{\text{s}}^{\text{4}}}\text{A}$
$\Rightarrow \ \text{4+co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{-}\ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{+}\ \text{4cos}{{\text{A}}^{\text{4}}}\text{A}\ \text{=}\ \text{co}{{\text{s}}^{\text{4}}}\text{A}$
Taking all the $\cos $ terms on are side,
$\text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{-}\ \text{co}{{\text{s}}^{\text{4}}}\text{A}\ \text{+4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{+}\ \text{4co}{{\text{s}}^{\text{2}}}\text{A}\ \text{+}\ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{-4co}{{\text{s}}^{\text{4}}}\text{A}\ \text{=}\ \text{4}$
$\Rightarrow \ \text{co}{{\text{s}}^{\text{6}}}\text{A}\ \text{-}\ \text{4co}{{\text{s}}^{\text{4}}}\text{A}\ \text{+}\ \text{8co}{{\text{s}}^{\text{2}}}\text{A}\ \text{=}\ \text{4}$
Hence, our answer will be 4.
Note: In such questions rearrangement of the given equation always leads us to the desired equation. Carefully verify each step before moving into the next step. Additionally some basic trigonometric ideates to keep in mind would be,
${{\sin }^{2}}\theta \ +{{\cos }^{2}}\theta =1$
${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $
${{\cot }^{2}}\theta +1=\text{cose}{{\text{c}}^{\text{2}}}\theta $.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

