
If sin (y+z-x), sin (z+x-y) and sin (x+y-z) are in AP, then, tan x, tan y and tan z are in
A. AP
B. GP
C. HP
D. None of these
Answer
585.3k+ views
Hint: Put the sin values in the basic relation of AP which is the difference of two consecutive terms will be the same and apply suitable identities. We will use \[\sin A-\sin B=2\sin \left( \dfrac{A-B}{2} \right)\times \cos \left( \dfrac{A+B}{2} \right)\] and then convert the sin and cos values in the form of tan values using another identity given by \[\tan C-\tan D=\dfrac{\sin \left( C+D \right)}{\cos C\times \cos D}\]
Complete step by step answer:
We are given that sin (y+z-x), sin (z+x-y), sin (x+y-z) are in AP or arithmetic progression. We have to find the relation between tan (x), tan (y) and tan (z).
We know that if a, b, c are in AP then, the difference between each of them is equal, that is,
b - a = c - b
Applying this very relation in given sin values, we get
sin (y+z-x) to be 'a', sin (z+x-y) to be 'b' and sin (x+y-z) to be 'c',
\[\text{sin }\left( \text{z}+\text{x}-\text{y} \right)-s\text{in }\left( \text{y}+\text{z}-\text{x} \right)\text{ }=\text{ sin }\left( \text{x}+\text{y}-\text{z} \right)-\text{sin }\left( \text{z}+\text{x}-\text{y} \right)\]
We know the trigonometric identity given by
\[\sin A-\sin B=2\sin \left( \dfrac{A-B}{2} \right)\times \cos \left( \dfrac{A+B}{2} \right)\]
So, we get
\[\begin{align}
& \text{sin }\left( \text{z}+\text{x}-\text{y} \right)-s\text{in }\left( \text{y}+\text{z}-\text{x} \right)=2\sin \left( x-y \right)\cos z \\
& \text{sin }\left( \text{x}+\text{y}-\text{z} \right)-\text{sin }\left( \text{z}+\text{x}-\text{y} \right)=2\sin \left( y-z \right)\cos x \\
& \Rightarrow 2\sin \left( x-y \right)\cos z=2\sin \left( y-z \right)\cos x \\
\end{align}\]
Now, we will divide the equation by \[\cos x\times \cos y\times \cos z\] on both sides to convert the form into tan.
\[\begin{align}
& \dfrac{2\sin \left( x-y \right)\cos z}{\cos x\times \cos y\times \cos z}=\dfrac{2\sin \left( y-z \right)\cos x}{\cos x\times \cos y\times \cos z} \\
& \Rightarrow \dfrac{\sin \left( x-y \right)}{\cos x\times \cos y}=\dfrac{\sin \left( y-z \right)}{\cos y\times \cos z} \\
\end{align}\]
We know the trigonometric identity,
\[\tan C-\tan D=\dfrac{\sin \left( C+D \right)}{\cos C\times \cos D}\]
Applying the identities here, we get
\[\tan x-\tan y=\tan y-\tan z\]
The difference between tan x, tan y and tan z is the same. Therefore, these are in AP.
Therefore, option A is correct.
Note: The problem can be done by other methods too, for example, by considering the relation of AP to be 2b = a+c and then proceeding, so, we will have the equation as, \[\text{2sin }\left( \text{z}+\text{x}-\text{y} \right)=s\text{in }\left( \text{y}+\text{z}-\text{x} \right)\text{+sin }\left( \text{x}+\text{y}-\text{z} \right)\] Then using variation identities, this can be converted in terms of tanx, tany and tanz to reach the final conclusion.
Complete step by step answer:
We are given that sin (y+z-x), sin (z+x-y), sin (x+y-z) are in AP or arithmetic progression. We have to find the relation between tan (x), tan (y) and tan (z).
We know that if a, b, c are in AP then, the difference between each of them is equal, that is,
b - a = c - b
Applying this very relation in given sin values, we get
sin (y+z-x) to be 'a', sin (z+x-y) to be 'b' and sin (x+y-z) to be 'c',
\[\text{sin }\left( \text{z}+\text{x}-\text{y} \right)-s\text{in }\left( \text{y}+\text{z}-\text{x} \right)\text{ }=\text{ sin }\left( \text{x}+\text{y}-\text{z} \right)-\text{sin }\left( \text{z}+\text{x}-\text{y} \right)\]
We know the trigonometric identity given by
\[\sin A-\sin B=2\sin \left( \dfrac{A-B}{2} \right)\times \cos \left( \dfrac{A+B}{2} \right)\]
So, we get
\[\begin{align}
& \text{sin }\left( \text{z}+\text{x}-\text{y} \right)-s\text{in }\left( \text{y}+\text{z}-\text{x} \right)=2\sin \left( x-y \right)\cos z \\
& \text{sin }\left( \text{x}+\text{y}-\text{z} \right)-\text{sin }\left( \text{z}+\text{x}-\text{y} \right)=2\sin \left( y-z \right)\cos x \\
& \Rightarrow 2\sin \left( x-y \right)\cos z=2\sin \left( y-z \right)\cos x \\
\end{align}\]
Now, we will divide the equation by \[\cos x\times \cos y\times \cos z\] on both sides to convert the form into tan.
\[\begin{align}
& \dfrac{2\sin \left( x-y \right)\cos z}{\cos x\times \cos y\times \cos z}=\dfrac{2\sin \left( y-z \right)\cos x}{\cos x\times \cos y\times \cos z} \\
& \Rightarrow \dfrac{\sin \left( x-y \right)}{\cos x\times \cos y}=\dfrac{\sin \left( y-z \right)}{\cos y\times \cos z} \\
\end{align}\]
We know the trigonometric identity,
\[\tan C-\tan D=\dfrac{\sin \left( C+D \right)}{\cos C\times \cos D}\]
Applying the identities here, we get
\[\tan x-\tan y=\tan y-\tan z\]
The difference between tan x, tan y and tan z is the same. Therefore, these are in AP.
Therefore, option A is correct.
Note: The problem can be done by other methods too, for example, by considering the relation of AP to be 2b = a+c and then proceeding, so, we will have the equation as, \[\text{2sin }\left( \text{z}+\text{x}-\text{y} \right)=s\text{in }\left( \text{y}+\text{z}-\text{x} \right)\text{+sin }\left( \text{x}+\text{y}-\text{z} \right)\] Then using variation identities, this can be converted in terms of tanx, tany and tanz to reach the final conclusion.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

