
If $ \sin \theta -\cos \theta =0 $, then $ {{\sin }^{4}}\theta +{{\cos }^{4}}\theta = $?
A. 1
B. $ \dfrac{1}{2} $
C. $ \dfrac{1}{4} $
D. $ \dfrac{3}{4} $
Answer
503.7k+ views
Hint: It will be very complicated to expand $ {{(a+b)}^{4}} $.
Find the value of $ \theta $ which satisfies the given equation and then substitute it in the given expression to evaluate it.
Recall that $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ and $ \cos 45{}^\circ =\dfrac{1}{\sqrt{2}} $.
Complete step by step answer:
We are given the equation:
$ \sin \theta -\cos \theta =0 $
⇒ $ \sin \theta =\cos \theta $
Dividing both sides by $ \cos \theta $, we get:
⇒ $ \dfrac{\sin \theta }{\cos \theta }=1 $
We know that $ \dfrac{\sin \theta }{\cos \theta }=\tan \theta $, therefore, we get:
⇒ $ \tan \theta =1 $
We also know that $ \tan 45{}^\circ =1 $, therefore, $ \theta =45{}^\circ $.
Now, substituting $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ and $ \cos 45{}^\circ =\dfrac{1}{\sqrt{2}} $ in the given expression, we get:
$ {{\sin }^{4}}\theta +{{\cos }^{4}}\theta $
= $ {{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}} $
= $ \dfrac{1}{4}+\dfrac{1}{4} $
= $ \dfrac{2}{4} $
= $ \dfrac{1}{2} $
The correct answer is B. $ \dfrac{1}{2} $.
Note: The value of $ \sin \theta $ and $ \cos \theta $ lies between -1 and 1.
$ \sin (-\theta )=-\sin \theta $ and $ \cos (-\theta )=\cos \theta $.
Values of Trigonometric Ratios for Common Angles:
Find the value of $ \theta $ which satisfies the given equation and then substitute it in the given expression to evaluate it.
Recall that $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ and $ \cos 45{}^\circ =\dfrac{1}{\sqrt{2}} $.
Complete step by step answer:
We are given the equation:
$ \sin \theta -\cos \theta =0 $
⇒ $ \sin \theta =\cos \theta $
Dividing both sides by $ \cos \theta $, we get:
⇒ $ \dfrac{\sin \theta }{\cos \theta }=1 $
We know that $ \dfrac{\sin \theta }{\cos \theta }=\tan \theta $, therefore, we get:
⇒ $ \tan \theta =1 $
We also know that $ \tan 45{}^\circ =1 $, therefore, $ \theta =45{}^\circ $.
Now, substituting $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ and $ \cos 45{}^\circ =\dfrac{1}{\sqrt{2}} $ in the given expression, we get:
$ {{\sin }^{4}}\theta +{{\cos }^{4}}\theta $
= $ {{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}} $
= $ \dfrac{1}{4}+\dfrac{1}{4} $
= $ \dfrac{2}{4} $
= $ \dfrac{1}{2} $
The correct answer is B. $ \dfrac{1}{2} $.
Note: The value of $ \sin \theta $ and $ \cos \theta $ lies between -1 and 1.
$ \sin (-\theta )=-\sin \theta $ and $ \cos (-\theta )=\cos \theta $.
Values of Trigonometric Ratios for Common Angles:
0° | 30° | 45° | 60° | 90° | |
sin | 0 | $ \dfrac{1}{2} $ | $ \dfrac{1}{\sqrt{2}} $ | $ \dfrac{\sqrt{3}}{2} $ | 1 |
cos | 1 | $ \dfrac{\sqrt{3}}{2} $ | $ \dfrac{1}{\sqrt{2}} $ | $ \dfrac{1}{2} $ | 0 |
tan | 0 | $ \dfrac{1}{\sqrt{3}} $ | 1 | $ \sqrt{3} $ | $ \infty $ |
csc | $ \infty $ | 2 | $ \sqrt{2} $ | $ \dfrac{2}{\sqrt{3}} $ | 1 |
sec | 1 | $ \dfrac{2}{\sqrt{3}} $ | $ \sqrt{2} $ | 2 | $ \infty $ |
cot | $ \infty $ | $ \sqrt{3} $ | 1 | $ \dfrac{1}{\sqrt{3}} $ | 0 |
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
