
If $ \sin \theta -\cos \theta =0 $, then $ {{\sin }^{4}}\theta +{{\cos }^{4}}\theta = $?
A. 1
B. $ \dfrac{1}{2} $
C. $ \dfrac{1}{4} $
D. $ \dfrac{3}{4} $
Answer
553.2k+ views
Hint: It will be very complicated to expand $ {{(a+b)}^{4}} $.
Find the value of $ \theta $ which satisfies the given equation and then substitute it in the given expression to evaluate it.
Recall that $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ and $ \cos 45{}^\circ =\dfrac{1}{\sqrt{2}} $.
Complete step by step answer:
We are given the equation:
$ \sin \theta -\cos \theta =0 $
⇒ $ \sin \theta =\cos \theta $
Dividing both sides by $ \cos \theta $, we get:
⇒ $ \dfrac{\sin \theta }{\cos \theta }=1 $
We know that $ \dfrac{\sin \theta }{\cos \theta }=\tan \theta $, therefore, we get:
⇒ $ \tan \theta =1 $
We also know that $ \tan 45{}^\circ =1 $, therefore, $ \theta =45{}^\circ $.
Now, substituting $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ and $ \cos 45{}^\circ =\dfrac{1}{\sqrt{2}} $ in the given expression, we get:
$ {{\sin }^{4}}\theta +{{\cos }^{4}}\theta $
= $ {{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}} $
= $ \dfrac{1}{4}+\dfrac{1}{4} $
= $ \dfrac{2}{4} $
= $ \dfrac{1}{2} $
The correct answer is B. $ \dfrac{1}{2} $.
Note: The value of $ \sin \theta $ and $ \cos \theta $ lies between -1 and 1.
$ \sin (-\theta )=-\sin \theta $ and $ \cos (-\theta )=\cos \theta $.
Values of Trigonometric Ratios for Common Angles:
Find the value of $ \theta $ which satisfies the given equation and then substitute it in the given expression to evaluate it.
Recall that $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ and $ \cos 45{}^\circ =\dfrac{1}{\sqrt{2}} $.
Complete step by step answer:
We are given the equation:
$ \sin \theta -\cos \theta =0 $
⇒ $ \sin \theta =\cos \theta $
Dividing both sides by $ \cos \theta $, we get:
⇒ $ \dfrac{\sin \theta }{\cos \theta }=1 $
We know that $ \dfrac{\sin \theta }{\cos \theta }=\tan \theta $, therefore, we get:
⇒ $ \tan \theta =1 $
We also know that $ \tan 45{}^\circ =1 $, therefore, $ \theta =45{}^\circ $.
Now, substituting $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ and $ \cos 45{}^\circ =\dfrac{1}{\sqrt{2}} $ in the given expression, we get:
$ {{\sin }^{4}}\theta +{{\cos }^{4}}\theta $
= $ {{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{4}} $
= $ \dfrac{1}{4}+\dfrac{1}{4} $
= $ \dfrac{2}{4} $
= $ \dfrac{1}{2} $
The correct answer is B. $ \dfrac{1}{2} $.
Note: The value of $ \sin \theta $ and $ \cos \theta $ lies between -1 and 1.
$ \sin (-\theta )=-\sin \theta $ and $ \cos (-\theta )=\cos \theta $.
Values of Trigonometric Ratios for Common Angles:
| 0° | 30° | 45° | 60° | 90° | |
| sin | 0 | $ \dfrac{1}{2} $ | $ \dfrac{1}{\sqrt{2}} $ | $ \dfrac{\sqrt{3}}{2} $ | 1 |
| cos | 1 | $ \dfrac{\sqrt{3}}{2} $ | $ \dfrac{1}{\sqrt{2}} $ | $ \dfrac{1}{2} $ | 0 |
| tan | 0 | $ \dfrac{1}{\sqrt{3}} $ | 1 | $ \sqrt{3} $ | $ \infty $ |
| csc | $ \infty $ | 2 | $ \sqrt{2} $ | $ \dfrac{2}{\sqrt{3}} $ | 1 |
| sec | 1 | $ \dfrac{2}{\sqrt{3}} $ | $ \sqrt{2} $ | 2 | $ \infty $ |
| cot | $ \infty $ | $ \sqrt{3} $ | 1 | $ \dfrac{1}{\sqrt{3}} $ | 0 |
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

