Answer
Verified
472.2k+ views
Hint: Use the Componendo Dividendo rule in the given expression. Apply trigonometric identities and simplify the expression to get the expression as \[\tan \left( \theta +\alpha \right)+2\tan \alpha \].
Complete step by step solution:
Given is the expression \[\sin \theta =3\sin \left( \theta +2\alpha \right)\]
\[\therefore \dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=3.\]
Let us use the Componendo Dividendo rule to solve the above expression.
Componendo Dividendo is a theorem on proportions which is used to perform calculations and reduce the number of steps.
According to Componendo Dividendo if \[\dfrac{a}{b}=\dfrac{c}{d},\]then it implies that \[\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}.......(1)\]
Thus applying Componendo Dividendo rule in the expression in equation (1),
\[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=\dfrac{3}{1}......(2)\]
Where,
\[\begin{align}
& a=\sin \theta \\
& b=\sin \left( \theta +2\alpha \right) \\
& c=3 \\
& d=1 \\
\end{align}\]
\[\begin{align}
& \therefore \dfrac{a+b}{a-b}=\dfrac{c+d}{c-d} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{3+1}{3-1} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{4}{2}=2......(3) \\
\end{align}\]
We know the trigonometric identities,
\[\begin{align}
& \operatorname{sinx}+siny=2sin\left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) \\
& \sin x-\sin y=2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \\
\end{align}\]
Let us apply these identities in equation (3).
\[x=\theta \]and\[y=\left( \theta +2\alpha \right)\].
\[\therefore \dfrac{2\sin \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\cos \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\sin \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}=2\]
By simplifying the expression, we get,
\[\begin{align}
& \Rightarrow \dfrac{\sin \left( \dfrac{2\theta +2\alpha }{2} \right)\cos \left( \dfrac{-2\alpha }{2} \right)}{\cos \left( \dfrac{2\theta +2\alpha }{2} \right)\sin \left( \dfrac{-2\alpha }{2} \right)}=2 \\
& \Rightarrow \dfrac{\sin \left( \theta +\alpha \right)\cos \left( -\alpha \right)}{\cos \left( \theta +\alpha \right)\sin \left( -\alpha \right)}=2 \\
\end{align}\]
The cosine is an even function, thus \[\cos (-\alpha )=\cos \alpha\].
The sine is an odd function, so \[sin(-\alpha )=-\sin \alpha \].
\[\dfrac{\sin \left( \theta +\alpha \right)\cos \left( \alpha \right)}{-\cos \left( \theta +\alpha \right)\sin \left( \alpha \right)}=2\]. By cross multiplying, we get,
\[\Rightarrow \dfrac{\sin \left( \theta +\alpha \right)}{\cos \left( \theta +\alpha \right)}=\dfrac{-2\sin \alpha }{\cos \alpha }\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }.\]
\[\begin{align}
& \therefore \tan (\theta +\alpha )=-2\tan \alpha \\
& \Rightarrow \tan (\theta +\alpha )+2\tan \alpha =0 \\
\end{align}\]
Thus we got the value of \[\tan (\theta +\alpha )+2\tan \alpha \] as 0.
Hence option D is the correct answer.
Note:
Remember the basic trigonometric identities like \[(sinA+sinB)\] and \[(sinA-sinB)\] which we have used here. They are very important for solving expressions like these. Just apply the formula and simplify it and you will get the answer.
Complete step by step solution:
Given is the expression \[\sin \theta =3\sin \left( \theta +2\alpha \right)\]
\[\therefore \dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=3.\]
Let us use the Componendo Dividendo rule to solve the above expression.
Componendo Dividendo is a theorem on proportions which is used to perform calculations and reduce the number of steps.
According to Componendo Dividendo if \[\dfrac{a}{b}=\dfrac{c}{d},\]then it implies that \[\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}.......(1)\]
Thus applying Componendo Dividendo rule in the expression in equation (1),
\[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=\dfrac{3}{1}......(2)\]
Where,
\[\begin{align}
& a=\sin \theta \\
& b=\sin \left( \theta +2\alpha \right) \\
& c=3 \\
& d=1 \\
\end{align}\]
\[\begin{align}
& \therefore \dfrac{a+b}{a-b}=\dfrac{c+d}{c-d} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{3+1}{3-1} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{4}{2}=2......(3) \\
\end{align}\]
We know the trigonometric identities,
\[\begin{align}
& \operatorname{sinx}+siny=2sin\left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) \\
& \sin x-\sin y=2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \\
\end{align}\]
Let us apply these identities in equation (3).
\[x=\theta \]and\[y=\left( \theta +2\alpha \right)\].
\[\therefore \dfrac{2\sin \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\cos \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\sin \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}=2\]
By simplifying the expression, we get,
\[\begin{align}
& \Rightarrow \dfrac{\sin \left( \dfrac{2\theta +2\alpha }{2} \right)\cos \left( \dfrac{-2\alpha }{2} \right)}{\cos \left( \dfrac{2\theta +2\alpha }{2} \right)\sin \left( \dfrac{-2\alpha }{2} \right)}=2 \\
& \Rightarrow \dfrac{\sin \left( \theta +\alpha \right)\cos \left( -\alpha \right)}{\cos \left( \theta +\alpha \right)\sin \left( -\alpha \right)}=2 \\
\end{align}\]
The cosine is an even function, thus \[\cos (-\alpha )=\cos \alpha\].
The sine is an odd function, so \[sin(-\alpha )=-\sin \alpha \].
\[\dfrac{\sin \left( \theta +\alpha \right)\cos \left( \alpha \right)}{-\cos \left( \theta +\alpha \right)\sin \left( \alpha \right)}=2\]. By cross multiplying, we get,
\[\Rightarrow \dfrac{\sin \left( \theta +\alpha \right)}{\cos \left( \theta +\alpha \right)}=\dfrac{-2\sin \alpha }{\cos \alpha }\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }.\]
\[\begin{align}
& \therefore \tan (\theta +\alpha )=-2\tan \alpha \\
& \Rightarrow \tan (\theta +\alpha )+2\tan \alpha =0 \\
\end{align}\]
Thus we got the value of \[\tan (\theta +\alpha )+2\tan \alpha \] as 0.
Hence option D is the correct answer.
Note:
Remember the basic trigonometric identities like \[(sinA+sinB)\] and \[(sinA-sinB)\] which we have used here. They are very important for solving expressions like these. Just apply the formula and simplify it and you will get the answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths