
If \[\sin \theta =3\sin \left( \theta +2\alpha \right),\] then the value of \[\tan \left( \theta +\alpha \right)+2\tan \alpha \] is:
A. 3
B. 2
C. 1
D. 0
Answer
605.1k+ views
Hint: Use the Componendo Dividendo rule in the given expression. Apply trigonometric identities and simplify the expression to get the expression as \[\tan \left( \theta +\alpha \right)+2\tan \alpha \].
Complete step by step solution:
Given is the expression \[\sin \theta =3\sin \left( \theta +2\alpha \right)\]
\[\therefore \dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=3.\]
Let us use the Componendo Dividendo rule to solve the above expression.
Componendo Dividendo is a theorem on proportions which is used to perform calculations and reduce the number of steps.
According to Componendo Dividendo if \[\dfrac{a}{b}=\dfrac{c}{d},\]then it implies that \[\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}.......(1)\]
Thus applying Componendo Dividendo rule in the expression in equation (1),
\[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=\dfrac{3}{1}......(2)\]
Where,
\[\begin{align}
& a=\sin \theta \\
& b=\sin \left( \theta +2\alpha \right) \\
& c=3 \\
& d=1 \\
\end{align}\]
\[\begin{align}
& \therefore \dfrac{a+b}{a-b}=\dfrac{c+d}{c-d} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{3+1}{3-1} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{4}{2}=2......(3) \\
\end{align}\]
We know the trigonometric identities,
\[\begin{align}
& \operatorname{sinx}+siny=2sin\left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) \\
& \sin x-\sin y=2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \\
\end{align}\]
Let us apply these identities in equation (3).
\[x=\theta \]and\[y=\left( \theta +2\alpha \right)\].
\[\therefore \dfrac{2\sin \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\cos \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\sin \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}=2\]
By simplifying the expression, we get,
\[\begin{align}
& \Rightarrow \dfrac{\sin \left( \dfrac{2\theta +2\alpha }{2} \right)\cos \left( \dfrac{-2\alpha }{2} \right)}{\cos \left( \dfrac{2\theta +2\alpha }{2} \right)\sin \left( \dfrac{-2\alpha }{2} \right)}=2 \\
& \Rightarrow \dfrac{\sin \left( \theta +\alpha \right)\cos \left( -\alpha \right)}{\cos \left( \theta +\alpha \right)\sin \left( -\alpha \right)}=2 \\
\end{align}\]
The cosine is an even function, thus \[\cos (-\alpha )=\cos \alpha\].
The sine is an odd function, so \[sin(-\alpha )=-\sin \alpha \].
\[\dfrac{\sin \left( \theta +\alpha \right)\cos \left( \alpha \right)}{-\cos \left( \theta +\alpha \right)\sin \left( \alpha \right)}=2\]. By cross multiplying, we get,
\[\Rightarrow \dfrac{\sin \left( \theta +\alpha \right)}{\cos \left( \theta +\alpha \right)}=\dfrac{-2\sin \alpha }{\cos \alpha }\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }.\]
\[\begin{align}
& \therefore \tan (\theta +\alpha )=-2\tan \alpha \\
& \Rightarrow \tan (\theta +\alpha )+2\tan \alpha =0 \\
\end{align}\]
Thus we got the value of \[\tan (\theta +\alpha )+2\tan \alpha \] as 0.
Hence option D is the correct answer.
Note:
Remember the basic trigonometric identities like \[(sinA+sinB)\] and \[(sinA-sinB)\] which we have used here. They are very important for solving expressions like these. Just apply the formula and simplify it and you will get the answer.
Complete step by step solution:
Given is the expression \[\sin \theta =3\sin \left( \theta +2\alpha \right)\]
\[\therefore \dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=3.\]
Let us use the Componendo Dividendo rule to solve the above expression.
Componendo Dividendo is a theorem on proportions which is used to perform calculations and reduce the number of steps.
According to Componendo Dividendo if \[\dfrac{a}{b}=\dfrac{c}{d},\]then it implies that \[\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}.......(1)\]
Thus applying Componendo Dividendo rule in the expression in equation (1),
\[\dfrac{\sin \theta }{\sin \left( \theta +2\alpha \right)}=\dfrac{3}{1}......(2)\]
Where,
\[\begin{align}
& a=\sin \theta \\
& b=\sin \left( \theta +2\alpha \right) \\
& c=3 \\
& d=1 \\
\end{align}\]
\[\begin{align}
& \therefore \dfrac{a+b}{a-b}=\dfrac{c+d}{c-d} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{3+1}{3-1} \\
& \Rightarrow \dfrac{\sin \theta +\sin \left( \theta +2\alpha \right)}{\sin \theta -\sin \left( \theta +2\alpha \right)}=\dfrac{4}{2}=2......(3) \\
\end{align}\]
We know the trigonometric identities,
\[\begin{align}
& \operatorname{sinx}+siny=2sin\left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) \\
& \sin x-\sin y=2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \\
\end{align}\]
Let us apply these identities in equation (3).
\[x=\theta \]and\[y=\left( \theta +2\alpha \right)\].
\[\therefore \dfrac{2\sin \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\cos \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\theta +2\alpha }{2} \right)\sin \left( \dfrac{\theta -\theta -2\alpha }{2} \right)}=2\]
By simplifying the expression, we get,
\[\begin{align}
& \Rightarrow \dfrac{\sin \left( \dfrac{2\theta +2\alpha }{2} \right)\cos \left( \dfrac{-2\alpha }{2} \right)}{\cos \left( \dfrac{2\theta +2\alpha }{2} \right)\sin \left( \dfrac{-2\alpha }{2} \right)}=2 \\
& \Rightarrow \dfrac{\sin \left( \theta +\alpha \right)\cos \left( -\alpha \right)}{\cos \left( \theta +\alpha \right)\sin \left( -\alpha \right)}=2 \\
\end{align}\]
The cosine is an even function, thus \[\cos (-\alpha )=\cos \alpha\].
The sine is an odd function, so \[sin(-\alpha )=-\sin \alpha \].
\[\dfrac{\sin \left( \theta +\alpha \right)\cos \left( \alpha \right)}{-\cos \left( \theta +\alpha \right)\sin \left( \alpha \right)}=2\]. By cross multiplying, we get,
\[\Rightarrow \dfrac{\sin \left( \theta +\alpha \right)}{\cos \left( \theta +\alpha \right)}=\dfrac{-2\sin \alpha }{\cos \alpha }\].
We know that \[\tan \theta =\dfrac{\sin \theta }{\cos \theta }.\]
\[\begin{align}
& \therefore \tan (\theta +\alpha )=-2\tan \alpha \\
& \Rightarrow \tan (\theta +\alpha )+2\tan \alpha =0 \\
\end{align}\]
Thus we got the value of \[\tan (\theta +\alpha )+2\tan \alpha \] as 0.
Hence option D is the correct answer.
Note:
Remember the basic trigonometric identities like \[(sinA+sinB)\] and \[(sinA-sinB)\] which we have used here. They are very important for solving expressions like these. Just apply the formula and simplify it and you will get the answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

