
If \[\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \] and \[\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \], then $\theta $ is equal to
A.\[\dfrac{\alpha }{2}\]
B.$\alpha $
C.$2\alpha $
D. \[\dfrac{\alpha }{6}\]
Answer
551.1k+ views
Hint: These types of questions are easy to solve if the correct trigonometric formula is used. Start solving the question by dividing the two equations. Use Trigonometric formula i.e. $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$.
The cosine function is even; therefore,
\[\cos \left( { - q} \right){\text{ }} = {\text{ cos}}\left( q \right)\]
Complete answer:
Consider the equations,
\[ \Rightarrow \] \[\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \ldots \ldots (1)\]
\[ \Rightarrow \] \[\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \ldots \ldots (2)\]
Divide each side of the equation \[(1)\] by the equation $(2)$.
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, $\theta = \alpha $ .
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \tan \alpha \]
Combine the terms whose sum is the even number so we can use the formulas,
\[ \Rightarrow \] \[\dfrac{{(\sin \theta + \sin 3\theta ) + \sin 2\theta }}{{(\cos \theta + \cos 3\theta ) + \cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula ; $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Here, $A = \theta $ and $B = 3\theta $. Substitute values of $A$and $B$ into the formula.
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \sin 2\theta }}{{2\cos \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {2\theta } \right)\cos \left( { - \theta } \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( { - \theta } \right) + \cos 2\theta }} = \tan \alpha \]
Since cosine is an even function $\therefore $\[\cos \left( { - \theta } \right) = \cos \theta \].
\[ \Rightarrow \dfrac{{2\sin \left( {2\theta } \right)\cos \left( \theta \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( \theta \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \dfrac{{\sin 2\theta (2\cos \left( \theta \right) + 1)}}{{\cos 2\theta (2\cos \left( \theta \right) + 1)}} = \tan \alpha \]
Cancel the common terms,
\[ \Rightarrow \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, angle is $2\theta $ .
\[ \Rightarrow \tan 2\theta = \tan \alpha \]
Comparing the angles we get,
\[ \Rightarrow \] $2\theta = \alpha $
\[ \Rightarrow \] $\theta = \dfrac{\alpha }{2}$
Correct Answer: A.\[\dfrac{\alpha }{2}\]
Note:
The most important thing is to solve the question by remembering the trigonometric formula. The cosine function is the even function\[\cos \left( { - \theta } \right) = \cos \theta \].
Always apply the correct trigonometric formula and think about the conversion from sine function to cosine function and vice versa i.e. $\cos ({90^ \circ } - \theta ) = \sin \theta $. Use the trigonometric formulas according to the question. Here are some useful formulas and identities are given below.
\[ \Rightarrow \] ${\sin ^2}\theta + {\cos ^2}\theta = 1$
\[ \Rightarrow \] ${\tan ^2}\theta + 1 = {\sec ^2}\theta $
\[ \Rightarrow \] $1 + {\cot ^2}\theta = {\csc ^2}\theta $
\[ \Rightarrow \] $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \] $\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \]$\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
The cosine function is even; therefore,
\[\cos \left( { - q} \right){\text{ }} = {\text{ cos}}\left( q \right)\]
Complete answer:
Consider the equations,
\[ \Rightarrow \] \[\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \ldots \ldots (1)\]
\[ \Rightarrow \] \[\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \ldots \ldots (2)\]
Divide each side of the equation \[(1)\] by the equation $(2)$.
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, $\theta = \alpha $ .
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \tan \alpha \]
Combine the terms whose sum is the even number so we can use the formulas,
\[ \Rightarrow \] \[\dfrac{{(\sin \theta + \sin 3\theta ) + \sin 2\theta }}{{(\cos \theta + \cos 3\theta ) + \cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula ; $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Here, $A = \theta $ and $B = 3\theta $. Substitute values of $A$and $B$ into the formula.
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \sin 2\theta }}{{2\cos \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {2\theta } \right)\cos \left( { - \theta } \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( { - \theta } \right) + \cos 2\theta }} = \tan \alpha \]
Since cosine is an even function $\therefore $\[\cos \left( { - \theta } \right) = \cos \theta \].
\[ \Rightarrow \dfrac{{2\sin \left( {2\theta } \right)\cos \left( \theta \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( \theta \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \dfrac{{\sin 2\theta (2\cos \left( \theta \right) + 1)}}{{\cos 2\theta (2\cos \left( \theta \right) + 1)}} = \tan \alpha \]
Cancel the common terms,
\[ \Rightarrow \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, angle is $2\theta $ .
\[ \Rightarrow \tan 2\theta = \tan \alpha \]
Comparing the angles we get,
\[ \Rightarrow \] $2\theta = \alpha $
\[ \Rightarrow \] $\theta = \dfrac{\alpha }{2}$
Correct Answer: A.\[\dfrac{\alpha }{2}\]
Note:
The most important thing is to solve the question by remembering the trigonometric formula. The cosine function is the even function\[\cos \left( { - \theta } \right) = \cos \theta \].
Always apply the correct trigonometric formula and think about the conversion from sine function to cosine function and vice versa i.e. $\cos ({90^ \circ } - \theta ) = \sin \theta $. Use the trigonometric formulas according to the question. Here are some useful formulas and identities are given below.
\[ \Rightarrow \] ${\sin ^2}\theta + {\cos ^2}\theta = 1$
\[ \Rightarrow \] ${\tan ^2}\theta + 1 = {\sec ^2}\theta $
\[ \Rightarrow \] $1 + {\cot ^2}\theta = {\csc ^2}\theta $
\[ \Rightarrow \] $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \] $\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \]$\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

