
If \[\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \] and \[\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \], then $\theta $ is equal to
A.\[\dfrac{\alpha }{2}\]
B.$\alpha $
C.$2\alpha $
D. \[\dfrac{\alpha }{6}\]
Answer
552k+ views
Hint: These types of questions are easy to solve if the correct trigonometric formula is used. Start solving the question by dividing the two equations. Use Trigonometric formula i.e. $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$.
The cosine function is even; therefore,
\[\cos \left( { - q} \right){\text{ }} = {\text{ cos}}\left( q \right)\]
Complete answer:
Consider the equations,
\[ \Rightarrow \] \[\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \ldots \ldots (1)\]
\[ \Rightarrow \] \[\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \ldots \ldots (2)\]
Divide each side of the equation \[(1)\] by the equation $(2)$.
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, $\theta = \alpha $ .
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \tan \alpha \]
Combine the terms whose sum is the even number so we can use the formulas,
\[ \Rightarrow \] \[\dfrac{{(\sin \theta + \sin 3\theta ) + \sin 2\theta }}{{(\cos \theta + \cos 3\theta ) + \cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula ; $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Here, $A = \theta $ and $B = 3\theta $. Substitute values of $A$and $B$ into the formula.
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \sin 2\theta }}{{2\cos \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {2\theta } \right)\cos \left( { - \theta } \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( { - \theta } \right) + \cos 2\theta }} = \tan \alpha \]
Since cosine is an even function $\therefore $\[\cos \left( { - \theta } \right) = \cos \theta \].
\[ \Rightarrow \dfrac{{2\sin \left( {2\theta } \right)\cos \left( \theta \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( \theta \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \dfrac{{\sin 2\theta (2\cos \left( \theta \right) + 1)}}{{\cos 2\theta (2\cos \left( \theta \right) + 1)}} = \tan \alpha \]
Cancel the common terms,
\[ \Rightarrow \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, angle is $2\theta $ .
\[ \Rightarrow \tan 2\theta = \tan \alpha \]
Comparing the angles we get,
\[ \Rightarrow \] $2\theta = \alpha $
\[ \Rightarrow \] $\theta = \dfrac{\alpha }{2}$
Correct Answer: A.\[\dfrac{\alpha }{2}\]
Note:
The most important thing is to solve the question by remembering the trigonometric formula. The cosine function is the even function\[\cos \left( { - \theta } \right) = \cos \theta \].
Always apply the correct trigonometric formula and think about the conversion from sine function to cosine function and vice versa i.e. $\cos ({90^ \circ } - \theta ) = \sin \theta $. Use the trigonometric formulas according to the question. Here are some useful formulas and identities are given below.
\[ \Rightarrow \] ${\sin ^2}\theta + {\cos ^2}\theta = 1$
\[ \Rightarrow \] ${\tan ^2}\theta + 1 = {\sec ^2}\theta $
\[ \Rightarrow \] $1 + {\cot ^2}\theta = {\csc ^2}\theta $
\[ \Rightarrow \] $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \] $\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \]$\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
The cosine function is even; therefore,
\[\cos \left( { - q} \right){\text{ }} = {\text{ cos}}\left( q \right)\]
Complete answer:
Consider the equations,
\[ \Rightarrow \] \[\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \ldots \ldots (1)\]
\[ \Rightarrow \] \[\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \ldots \ldots (2)\]
Divide each side of the equation \[(1)\] by the equation $(2)$.
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, $\theta = \alpha $ .
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \tan \alpha \]
Combine the terms whose sum is the even number so we can use the formulas,
\[ \Rightarrow \] \[\dfrac{{(\sin \theta + \sin 3\theta ) + \sin 2\theta }}{{(\cos \theta + \cos 3\theta ) + \cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula ; $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Here, $A = \theta $ and $B = 3\theta $. Substitute values of $A$and $B$ into the formula.
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \sin 2\theta }}{{2\cos \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {2\theta } \right)\cos \left( { - \theta } \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( { - \theta } \right) + \cos 2\theta }} = \tan \alpha \]
Since cosine is an even function $\therefore $\[\cos \left( { - \theta } \right) = \cos \theta \].
\[ \Rightarrow \dfrac{{2\sin \left( {2\theta } \right)\cos \left( \theta \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( \theta \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \dfrac{{\sin 2\theta (2\cos \left( \theta \right) + 1)}}{{\cos 2\theta (2\cos \left( \theta \right) + 1)}} = \tan \alpha \]
Cancel the common terms,
\[ \Rightarrow \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, angle is $2\theta $ .
\[ \Rightarrow \tan 2\theta = \tan \alpha \]
Comparing the angles we get,
\[ \Rightarrow \] $2\theta = \alpha $
\[ \Rightarrow \] $\theta = \dfrac{\alpha }{2}$
Correct Answer: A.\[\dfrac{\alpha }{2}\]
Note:
The most important thing is to solve the question by remembering the trigonometric formula. The cosine function is the even function\[\cos \left( { - \theta } \right) = \cos \theta \].
Always apply the correct trigonometric formula and think about the conversion from sine function to cosine function and vice versa i.e. $\cos ({90^ \circ } - \theta ) = \sin \theta $. Use the trigonometric formulas according to the question. Here are some useful formulas and identities are given below.
\[ \Rightarrow \] ${\sin ^2}\theta + {\cos ^2}\theta = 1$
\[ \Rightarrow \] ${\tan ^2}\theta + 1 = {\sec ^2}\theta $
\[ \Rightarrow \] $1 + {\cot ^2}\theta = {\csc ^2}\theta $
\[ \Rightarrow \] $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \] $\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \]$\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

