Answer
Verified
409.8k+ views
Hint: These types of questions are easy to solve if the correct trigonometric formula is used. Start solving the question by dividing the two equations. Use Trigonometric formula i.e. $\sin C + \sin D = 2\sin \left( {\dfrac{{C + D}}{2}} \right)\cos \left( {\dfrac{{C - D}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$.
The cosine function is even; therefore,
\[\cos \left( { - q} \right){\text{ }} = {\text{ cos}}\left( q \right)\]
Complete answer:
Consider the equations,
\[ \Rightarrow \] \[\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \ldots \ldots (1)\]
\[ \Rightarrow \] \[\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \ldots \ldots (2)\]
Divide each side of the equation \[(1)\] by the equation $(2)$.
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, $\theta = \alpha $ .
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \tan \alpha \]
Combine the terms whose sum is the even number so we can use the formulas,
\[ \Rightarrow \] \[\dfrac{{(\sin \theta + \sin 3\theta ) + \sin 2\theta }}{{(\cos \theta + \cos 3\theta ) + \cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula ; $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Here, $A = \theta $ and $B = 3\theta $. Substitute values of $A$and $B$ into the formula.
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \sin 2\theta }}{{2\cos \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {2\theta } \right)\cos \left( { - \theta } \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( { - \theta } \right) + \cos 2\theta }} = \tan \alpha \]
Since cosine is an even function $\therefore $\[\cos \left( { - \theta } \right) = \cos \theta \].
\[ \Rightarrow \dfrac{{2\sin \left( {2\theta } \right)\cos \left( \theta \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( \theta \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \dfrac{{\sin 2\theta (2\cos \left( \theta \right) + 1)}}{{\cos 2\theta (2\cos \left( \theta \right) + 1)}} = \tan \alpha \]
Cancel the common terms,
\[ \Rightarrow \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, angle is $2\theta $ .
\[ \Rightarrow \tan 2\theta = \tan \alpha \]
Comparing the angles we get,
\[ \Rightarrow \] $2\theta = \alpha $
\[ \Rightarrow \] $\theta = \dfrac{\alpha }{2}$
Correct Answer: A.\[\dfrac{\alpha }{2}\]
Note:
The most important thing is to solve the question by remembering the trigonometric formula. The cosine function is the even function\[\cos \left( { - \theta } \right) = \cos \theta \].
Always apply the correct trigonometric formula and think about the conversion from sine function to cosine function and vice versa i.e. $\cos ({90^ \circ } - \theta ) = \sin \theta $. Use the trigonometric formulas according to the question. Here are some useful formulas and identities are given below.
\[ \Rightarrow \] ${\sin ^2}\theta + {\cos ^2}\theta = 1$
\[ \Rightarrow \] ${\tan ^2}\theta + 1 = {\sec ^2}\theta $
\[ \Rightarrow \] $1 + {\cot ^2}\theta = {\csc ^2}\theta $
\[ \Rightarrow \] $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \] $\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \]$\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
The cosine function is even; therefore,
\[\cos \left( { - q} \right){\text{ }} = {\text{ cos}}\left( q \right)\]
Complete answer:
Consider the equations,
\[ \Rightarrow \] \[\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha \ldots \ldots (1)\]
\[ \Rightarrow \] \[\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha \ldots \ldots (2)\]
Divide each side of the equation \[(1)\] by the equation $(2)$.
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \dfrac{{\sin \alpha }}{{\cos \alpha }}\]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, $\theta = \alpha $ .
\[ \Rightarrow \] \[\dfrac{{\sin \theta + \sin 2\theta + \sin 3\theta }}{{\cos \theta + \cos 2\theta + \cos 3\theta }} = \tan \alpha \]
Combine the terms whose sum is the even number so we can use the formulas,
\[ \Rightarrow \] \[\dfrac{{(\sin \theta + \sin 3\theta ) + \sin 2\theta }}{{(\cos \theta + \cos 3\theta ) + \cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula ; $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$ and $\cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
Here, $A = \theta $ and $B = 3\theta $. Substitute values of $A$and $B$ into the formula.
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \sin 2\theta }}{{2\cos \left( {\dfrac{{\theta + 3\theta }}{2}} \right)\cos \left( {\dfrac{{\theta - 3\theta }}{2}} \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \] \[\dfrac{{2\sin \left( {2\theta } \right)\cos \left( { - \theta } \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( { - \theta } \right) + \cos 2\theta }} = \tan \alpha \]
Since cosine is an even function $\therefore $\[\cos \left( { - \theta } \right) = \cos \theta \].
\[ \Rightarrow \dfrac{{2\sin \left( {2\theta } \right)\cos \left( \theta \right) + \sin 2\theta }}{{2\cos \left( {2\theta } \right)\cos \left( \theta \right) + \cos 2\theta }} = \tan \alpha \]
\[ \Rightarrow \dfrac{{\sin 2\theta (2\cos \left( \theta \right) + 1)}}{{\cos 2\theta (2\cos \left( \theta \right) + 1)}} = \tan \alpha \]
Cancel the common terms,
\[ \Rightarrow \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \tan \alpha \]
Apply the trigonometric formula, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \]. Here, angle is $2\theta $ .
\[ \Rightarrow \tan 2\theta = \tan \alpha \]
Comparing the angles we get,
\[ \Rightarrow \] $2\theta = \alpha $
\[ \Rightarrow \] $\theta = \dfrac{\alpha }{2}$
Correct Answer: A.\[\dfrac{\alpha }{2}\]
Note:
The most important thing is to solve the question by remembering the trigonometric formula. The cosine function is the even function\[\cos \left( { - \theta } \right) = \cos \theta \].
Always apply the correct trigonometric formula and think about the conversion from sine function to cosine function and vice versa i.e. $\cos ({90^ \circ } - \theta ) = \sin \theta $. Use the trigonometric formulas according to the question. Here are some useful formulas and identities are given below.
\[ \Rightarrow \] ${\sin ^2}\theta + {\cos ^2}\theta = 1$
\[ \Rightarrow \] ${\tan ^2}\theta + 1 = {\sec ^2}\theta $
\[ \Rightarrow \] $1 + {\cot ^2}\theta = {\csc ^2}\theta $
\[ \Rightarrow \] $\sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \] $\sin A - \sin B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
\[ \Rightarrow \]$\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right)$
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE