
If \[\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right)\] , \[n \ne 1\], then the value of \[\dfrac{{\tan \theta }}{{\tan \phi }}\] is:
A) \[\dfrac{n}{{n - 1}}\]
B) \[\dfrac{{n + 1}}{{n - 1}}\]
C) \[\dfrac{n}{{1 - n}}\]
D) \[\dfrac{{1 + n}}{{1 - n}}\]
Answer
557.1k+ views
Hint: Here we will use the formula of \[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\] and \[\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\] where \[{\text{A}}\] and \[{\text{B}}\] are any variables.
Complete step-by-step solution:
Step 1: It is given that
\[\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right)\] where
\[n \ne 1\]. We will apply the Componendo-Dividendo rule which states that if
\[a\], \[b\], \[c\] and \[d\] are four variables and
\[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\] , then by applying this rule we will get the expression as
\[\dfrac{{\left( {a + b} \right) + \left( {a - b} \right)}}{{\left( {a - b} \right) - \left( {a - b} \right)}} = \dfrac{{\left( {c + d} \right) + \left( {c - d} \right)}}{{\left( {c - d} \right) - \left( {c - d} \right)}}\]. We can write the given expression as below:
\[\dfrac{{\sin \left( {\theta + \phi } \right)}}{{\sin \left( {\theta - \phi } \right)}} = n\]
By applying this rule in the given expression, we get:
\[ \Rightarrow \dfrac{{\sin \left( {\theta + \phi } \right) + \sin \left( {\theta - \phi } \right)}}{{\sin \left( {\theta - \phi } \right) - \sin \left( {\theta - \phi } \right)}} = \dfrac{{n + 1}}{{n - 1}}\] ………………………… (1)
Step 2: By applying the formula of
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\], in the above expression (1), we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\cos \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\sin \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the terms inside the brackets, we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{2\theta }}{2}} \right)\cos \left( {\dfrac{{2\phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{2\theta }}{2}} \right)\sin \left( {\dfrac{{2\phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the brackets of the above expression, we get:
\[ \Rightarrow \dfrac{{2\sin \left( \theta \right)\cos \left( \phi \right)}}{{2\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By eliminating
\[2\]from the LHS side of the above expression we get:
\[ \Rightarrow \dfrac{{\sin \left( \theta \right)\cos \left( \phi \right)}}{{\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\] …………………………. (2)
Step 3: Now, as we know that
\[\dfrac{{\sin a}}{{\cos a}} = \tan a\], so by comparing it with the above expression (2), we get:
\[ \Rightarrow \dfrac{{\tan \theta }}{{\tan \phi }} = \dfrac{{n + 1}}{{n - 1}}\]
\[\because \] Option B is correct.
Note: Students need to remember some basic formulas \[{\text{sinAcosB}}\] for solving these types of questions easily. Some of them are mentioned below:
\[\sin \left( {{\text{A + B}}} \right) = \sin {\text{A cosB + cosA sinB}}\]
\[\sin \left( {{\text{A - B}}} \right) = \sin {\text{A cosB - cosA sinB}}\]
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
\[\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
Also, you should remember the Componendo-Dividendo rule which is a theorem that allows for a quick way to perform calculations and also it reduces the number of expansions needed.
It is used when dealing with equations that involve fractions or we can say rational fractions.
The theorem states that, if \[a\], \[b\], \[c\] and \[d\] are four numbers such that
\[b\] and \[d\] are non-zero and \[\dfrac{a}{b} = \dfrac{c}{d}\], then the following holds as below:
Componendo: \[\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\]
Dividendo: \[\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\]
For \[k \ne \dfrac{a}{b}\], \[\dfrac{{a + kb}}{{a - kb}} = \dfrac{{c + kd}}{{c - kd}}\]
For \[k \ne \dfrac{{ - b}}{a}\], \[\dfrac{a}{b} = \dfrac{{a + kc}}{{b + kd}}\]
Complete step-by-step solution:
Step 1: It is given that
\[\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right)\] where
\[n \ne 1\]. We will apply the Componendo-Dividendo rule which states that if
\[a\], \[b\], \[c\] and \[d\] are four variables and
\[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\] , then by applying this rule we will get the expression as
\[\dfrac{{\left( {a + b} \right) + \left( {a - b} \right)}}{{\left( {a - b} \right) - \left( {a - b} \right)}} = \dfrac{{\left( {c + d} \right) + \left( {c - d} \right)}}{{\left( {c - d} \right) - \left( {c - d} \right)}}\]. We can write the given expression as below:
\[\dfrac{{\sin \left( {\theta + \phi } \right)}}{{\sin \left( {\theta - \phi } \right)}} = n\]
By applying this rule in the given expression, we get:
\[ \Rightarrow \dfrac{{\sin \left( {\theta + \phi } \right) + \sin \left( {\theta - \phi } \right)}}{{\sin \left( {\theta - \phi } \right) - \sin \left( {\theta - \phi } \right)}} = \dfrac{{n + 1}}{{n - 1}}\] ………………………… (1)
Step 2: By applying the formula of
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\], in the above expression (1), we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\cos \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\sin \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the terms inside the brackets, we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{2\theta }}{2}} \right)\cos \left( {\dfrac{{2\phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{2\theta }}{2}} \right)\sin \left( {\dfrac{{2\phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the brackets of the above expression, we get:
\[ \Rightarrow \dfrac{{2\sin \left( \theta \right)\cos \left( \phi \right)}}{{2\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By eliminating
\[2\]from the LHS side of the above expression we get:
\[ \Rightarrow \dfrac{{\sin \left( \theta \right)\cos \left( \phi \right)}}{{\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\] …………………………. (2)
Step 3: Now, as we know that
\[\dfrac{{\sin a}}{{\cos a}} = \tan a\], so by comparing it with the above expression (2), we get:
\[ \Rightarrow \dfrac{{\tan \theta }}{{\tan \phi }} = \dfrac{{n + 1}}{{n - 1}}\]
\[\because \] Option B is correct.
Note: Students need to remember some basic formulas \[{\text{sinAcosB}}\] for solving these types of questions easily. Some of them are mentioned below:
\[\sin \left( {{\text{A + B}}} \right) = \sin {\text{A cosB + cosA sinB}}\]
\[\sin \left( {{\text{A - B}}} \right) = \sin {\text{A cosB - cosA sinB}}\]
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
\[\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
Also, you should remember the Componendo-Dividendo rule which is a theorem that allows for a quick way to perform calculations and also it reduces the number of expansions needed.
It is used when dealing with equations that involve fractions or we can say rational fractions.
The theorem states that, if \[a\], \[b\], \[c\] and \[d\] are four numbers such that
\[b\] and \[d\] are non-zero and \[\dfrac{a}{b} = \dfrac{c}{d}\], then the following holds as below:
Componendo: \[\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\]
Dividendo: \[\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\]
For \[k \ne \dfrac{a}{b}\], \[\dfrac{{a + kb}}{{a - kb}} = \dfrac{{c + kd}}{{c - kd}}\]
For \[k \ne \dfrac{{ - b}}{a}\], \[\dfrac{a}{b} = \dfrac{{a + kc}}{{b + kd}}\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

