
If \[\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right)\] , \[n \ne 1\], then the value of \[\dfrac{{\tan \theta }}{{\tan \phi }}\] is:
A) \[\dfrac{n}{{n - 1}}\]
B) \[\dfrac{{n + 1}}{{n - 1}}\]
C) \[\dfrac{n}{{1 - n}}\]
D) \[\dfrac{{1 + n}}{{1 - n}}\]
Answer
571.5k+ views
Hint: Here we will use the formula of \[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\] and \[\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\] where \[{\text{A}}\] and \[{\text{B}}\] are any variables.
Complete step-by-step solution:
Step 1: It is given that
\[\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right)\] where
\[n \ne 1\]. We will apply the Componendo-Dividendo rule which states that if
\[a\], \[b\], \[c\] and \[d\] are four variables and
\[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\] , then by applying this rule we will get the expression as
\[\dfrac{{\left( {a + b} \right) + \left( {a - b} \right)}}{{\left( {a - b} \right) - \left( {a - b} \right)}} = \dfrac{{\left( {c + d} \right) + \left( {c - d} \right)}}{{\left( {c - d} \right) - \left( {c - d} \right)}}\]. We can write the given expression as below:
\[\dfrac{{\sin \left( {\theta + \phi } \right)}}{{\sin \left( {\theta - \phi } \right)}} = n\]
By applying this rule in the given expression, we get:
\[ \Rightarrow \dfrac{{\sin \left( {\theta + \phi } \right) + \sin \left( {\theta - \phi } \right)}}{{\sin \left( {\theta - \phi } \right) - \sin \left( {\theta - \phi } \right)}} = \dfrac{{n + 1}}{{n - 1}}\] ………………………… (1)
Step 2: By applying the formula of
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\], in the above expression (1), we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\cos \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\sin \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the terms inside the brackets, we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{2\theta }}{2}} \right)\cos \left( {\dfrac{{2\phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{2\theta }}{2}} \right)\sin \left( {\dfrac{{2\phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the brackets of the above expression, we get:
\[ \Rightarrow \dfrac{{2\sin \left( \theta \right)\cos \left( \phi \right)}}{{2\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By eliminating
\[2\]from the LHS side of the above expression we get:
\[ \Rightarrow \dfrac{{\sin \left( \theta \right)\cos \left( \phi \right)}}{{\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\] …………………………. (2)
Step 3: Now, as we know that
\[\dfrac{{\sin a}}{{\cos a}} = \tan a\], so by comparing it with the above expression (2), we get:
\[ \Rightarrow \dfrac{{\tan \theta }}{{\tan \phi }} = \dfrac{{n + 1}}{{n - 1}}\]
\[\because \] Option B is correct.
Note: Students need to remember some basic formulas \[{\text{sinAcosB}}\] for solving these types of questions easily. Some of them are mentioned below:
\[\sin \left( {{\text{A + B}}} \right) = \sin {\text{A cosB + cosA sinB}}\]
\[\sin \left( {{\text{A - B}}} \right) = \sin {\text{A cosB - cosA sinB}}\]
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
\[\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
Also, you should remember the Componendo-Dividendo rule which is a theorem that allows for a quick way to perform calculations and also it reduces the number of expansions needed.
It is used when dealing with equations that involve fractions or we can say rational fractions.
The theorem states that, if \[a\], \[b\], \[c\] and \[d\] are four numbers such that
\[b\] and \[d\] are non-zero and \[\dfrac{a}{b} = \dfrac{c}{d}\], then the following holds as below:
Componendo: \[\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\]
Dividendo: \[\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\]
For \[k \ne \dfrac{a}{b}\], \[\dfrac{{a + kb}}{{a - kb}} = \dfrac{{c + kd}}{{c - kd}}\]
For \[k \ne \dfrac{{ - b}}{a}\], \[\dfrac{a}{b} = \dfrac{{a + kc}}{{b + kd}}\]
Complete step-by-step solution:
Step 1: It is given that
\[\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right)\] where
\[n \ne 1\]. We will apply the Componendo-Dividendo rule which states that if
\[a\], \[b\], \[c\] and \[d\] are four variables and
\[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\] , then by applying this rule we will get the expression as
\[\dfrac{{\left( {a + b} \right) + \left( {a - b} \right)}}{{\left( {a - b} \right) - \left( {a - b} \right)}} = \dfrac{{\left( {c + d} \right) + \left( {c - d} \right)}}{{\left( {c - d} \right) - \left( {c - d} \right)}}\]. We can write the given expression as below:
\[\dfrac{{\sin \left( {\theta + \phi } \right)}}{{\sin \left( {\theta - \phi } \right)}} = n\]
By applying this rule in the given expression, we get:
\[ \Rightarrow \dfrac{{\sin \left( {\theta + \phi } \right) + \sin \left( {\theta - \phi } \right)}}{{\sin \left( {\theta - \phi } \right) - \sin \left( {\theta - \phi } \right)}} = \dfrac{{n + 1}}{{n - 1}}\] ………………………… (1)
Step 2: By applying the formula of
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\], in the above expression (1), we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\cos \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\sin \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the terms inside the brackets, we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{2\theta }}{2}} \right)\cos \left( {\dfrac{{2\phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{2\theta }}{2}} \right)\sin \left( {\dfrac{{2\phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the brackets of the above expression, we get:
\[ \Rightarrow \dfrac{{2\sin \left( \theta \right)\cos \left( \phi \right)}}{{2\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By eliminating
\[2\]from the LHS side of the above expression we get:
\[ \Rightarrow \dfrac{{\sin \left( \theta \right)\cos \left( \phi \right)}}{{\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\] …………………………. (2)
Step 3: Now, as we know that
\[\dfrac{{\sin a}}{{\cos a}} = \tan a\], so by comparing it with the above expression (2), we get:
\[ \Rightarrow \dfrac{{\tan \theta }}{{\tan \phi }} = \dfrac{{n + 1}}{{n - 1}}\]
\[\because \] Option B is correct.
Note: Students need to remember some basic formulas \[{\text{sinAcosB}}\] for solving these types of questions easily. Some of them are mentioned below:
\[\sin \left( {{\text{A + B}}} \right) = \sin {\text{A cosB + cosA sinB}}\]
\[\sin \left( {{\text{A - B}}} \right) = \sin {\text{A cosB - cosA sinB}}\]
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
\[\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
Also, you should remember the Componendo-Dividendo rule which is a theorem that allows for a quick way to perform calculations and also it reduces the number of expansions needed.
It is used when dealing with equations that involve fractions or we can say rational fractions.
The theorem states that, if \[a\], \[b\], \[c\] and \[d\] are four numbers such that
\[b\] and \[d\] are non-zero and \[\dfrac{a}{b} = \dfrac{c}{d}\], then the following holds as below:
Componendo: \[\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\]
Dividendo: \[\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\]
For \[k \ne \dfrac{a}{b}\], \[\dfrac{{a + kb}}{{a - kb}} = \dfrac{{c + kd}}{{c - kd}}\]
For \[k \ne \dfrac{{ - b}}{a}\], \[\dfrac{a}{b} = \dfrac{{a + kc}}{{b + kd}}\]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Draw the diagram showing the germination of pollen class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

