
If \[\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right)\] , \[n \ne 1\], then the value of \[\dfrac{{\tan \theta }}{{\tan \phi }}\] is:
A) \[\dfrac{n}{{n - 1}}\]
B) \[\dfrac{{n + 1}}{{n - 1}}\]
C) \[\dfrac{n}{{1 - n}}\]
D) \[\dfrac{{1 + n}}{{1 - n}}\]
Answer
484.8k+ views
Hint: Here we will use the formula of \[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\] and \[\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\] where \[{\text{A}}\] and \[{\text{B}}\] are any variables.
Complete step-by-step solution:
Step 1: It is given that
\[\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right)\] where
\[n \ne 1\]. We will apply the Componendo-Dividendo rule which states that if
\[a\], \[b\], \[c\] and \[d\] are four variables and
\[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\] , then by applying this rule we will get the expression as
\[\dfrac{{\left( {a + b} \right) + \left( {a - b} \right)}}{{\left( {a - b} \right) - \left( {a - b} \right)}} = \dfrac{{\left( {c + d} \right) + \left( {c - d} \right)}}{{\left( {c - d} \right) - \left( {c - d} \right)}}\]. We can write the given expression as below:
\[\dfrac{{\sin \left( {\theta + \phi } \right)}}{{\sin \left( {\theta - \phi } \right)}} = n\]
By applying this rule in the given expression, we get:
\[ \Rightarrow \dfrac{{\sin \left( {\theta + \phi } \right) + \sin \left( {\theta - \phi } \right)}}{{\sin \left( {\theta - \phi } \right) - \sin \left( {\theta - \phi } \right)}} = \dfrac{{n + 1}}{{n - 1}}\] ………………………… (1)
Step 2: By applying the formula of
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\], in the above expression (1), we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\cos \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\sin \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the terms inside the brackets, we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{2\theta }}{2}} \right)\cos \left( {\dfrac{{2\phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{2\theta }}{2}} \right)\sin \left( {\dfrac{{2\phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the brackets of the above expression, we get:
\[ \Rightarrow \dfrac{{2\sin \left( \theta \right)\cos \left( \phi \right)}}{{2\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By eliminating
\[2\]from the LHS side of the above expression we get:
\[ \Rightarrow \dfrac{{\sin \left( \theta \right)\cos \left( \phi \right)}}{{\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\] …………………………. (2)
Step 3: Now, as we know that
\[\dfrac{{\sin a}}{{\cos a}} = \tan a\], so by comparing it with the above expression (2), we get:
\[ \Rightarrow \dfrac{{\tan \theta }}{{\tan \phi }} = \dfrac{{n + 1}}{{n - 1}}\]
\[\because \] Option B is correct.
Note: Students need to remember some basic formulas \[{\text{sinAcosB}}\] for solving these types of questions easily. Some of them are mentioned below:
\[\sin \left( {{\text{A + B}}} \right) = \sin {\text{A cosB + cosA sinB}}\]
\[\sin \left( {{\text{A - B}}} \right) = \sin {\text{A cosB - cosA sinB}}\]
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
\[\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
Also, you should remember the Componendo-Dividendo rule which is a theorem that allows for a quick way to perform calculations and also it reduces the number of expansions needed.
It is used when dealing with equations that involve fractions or we can say rational fractions.
The theorem states that, if \[a\], \[b\], \[c\] and \[d\] are four numbers such that
\[b\] and \[d\] are non-zero and \[\dfrac{a}{b} = \dfrac{c}{d}\], then the following holds as below:
Componendo: \[\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\]
Dividendo: \[\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\]
For \[k \ne \dfrac{a}{b}\], \[\dfrac{{a + kb}}{{a - kb}} = \dfrac{{c + kd}}{{c - kd}}\]
For \[k \ne \dfrac{{ - b}}{a}\], \[\dfrac{a}{b} = \dfrac{{a + kc}}{{b + kd}}\]
Complete step-by-step solution:
Step 1: It is given that
\[\sin \left( {\theta + \phi } \right) = n\sin \left( {\theta - \phi } \right)\] where
\[n \ne 1\]. We will apply the Componendo-Dividendo rule which states that if
\[a\], \[b\], \[c\] and \[d\] are four variables and
\[\dfrac{{a + b}}{{a - b}} = \dfrac{{c + d}}{{c - d}}\] , then by applying this rule we will get the expression as
\[\dfrac{{\left( {a + b} \right) + \left( {a - b} \right)}}{{\left( {a - b} \right) - \left( {a - b} \right)}} = \dfrac{{\left( {c + d} \right) + \left( {c - d} \right)}}{{\left( {c - d} \right) - \left( {c - d} \right)}}\]. We can write the given expression as below:
\[\dfrac{{\sin \left( {\theta + \phi } \right)}}{{\sin \left( {\theta - \phi } \right)}} = n\]
By applying this rule in the given expression, we get:
\[ \Rightarrow \dfrac{{\sin \left( {\theta + \phi } \right) + \sin \left( {\theta - \phi } \right)}}{{\sin \left( {\theta - \phi } \right) - \sin \left( {\theta - \phi } \right)}} = \dfrac{{n + 1}}{{n - 1}}\] ………………………… (1)
Step 2: By applying the formula of
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\], in the above expression (1), we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\cos \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{\theta + \phi + \theta - \phi }}{2}} \right)\sin \left( {\dfrac{{\theta + \phi - \theta + \phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the terms inside the brackets, we get:
\[ \Rightarrow \dfrac{{2\sin \left( {\dfrac{{2\theta }}{2}} \right)\cos \left( {\dfrac{{2\phi }}{2}} \right)}}{{2\cos \left( {\dfrac{{2\theta }}{2}} \right)\sin \left( {\dfrac{{2\phi }}{2}} \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By simplifying the brackets of the above expression, we get:
\[ \Rightarrow \dfrac{{2\sin \left( \theta \right)\cos \left( \phi \right)}}{{2\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\]
By eliminating
\[2\]from the LHS side of the above expression we get:
\[ \Rightarrow \dfrac{{\sin \left( \theta \right)\cos \left( \phi \right)}}{{\cos \left( \theta \right)\sin \left( \phi \right)}} = \dfrac{{n + 1}}{{n - 1}}\] …………………………. (2)
Step 3: Now, as we know that
\[\dfrac{{\sin a}}{{\cos a}} = \tan a\], so by comparing it with the above expression (2), we get:
\[ \Rightarrow \dfrac{{\tan \theta }}{{\tan \phi }} = \dfrac{{n + 1}}{{n - 1}}\]
\[\because \] Option B is correct.
Note: Students need to remember some basic formulas \[{\text{sinAcosB}}\] for solving these types of questions easily. Some of them are mentioned below:
\[\sin \left( {{\text{A + B}}} \right) = \sin {\text{A cosB + cosA sinB}}\]
\[\sin \left( {{\text{A - B}}} \right) = \sin {\text{A cosB - cosA sinB}}\]
\[\sin \left( {\text{A}} \right) + \sin \left( {\text{B}} \right) = 2\sin \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\cos \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
\[\sin \left( {\text{A}} \right) - \sin \left( {\text{B}} \right) = 2\cos \left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\sin \left( {\dfrac{{{\text{A - B}}}}{2}} \right)\]
Also, you should remember the Componendo-Dividendo rule which is a theorem that allows for a quick way to perform calculations and also it reduces the number of expansions needed.
It is used when dealing with equations that involve fractions or we can say rational fractions.
The theorem states that, if \[a\], \[b\], \[c\] and \[d\] are four numbers such that
\[b\] and \[d\] are non-zero and \[\dfrac{a}{b} = \dfrac{c}{d}\], then the following holds as below:
Componendo: \[\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\]
Dividendo: \[\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\]
For \[k \ne \dfrac{a}{b}\], \[\dfrac{{a + kb}}{{a - kb}} = \dfrac{{c + kd}}{{c - kd}}\]
For \[k \ne \dfrac{{ - b}}{a}\], \[\dfrac{a}{b} = \dfrac{{a + kc}}{{b + kd}}\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 4 Maths: Engaging Questions & Answers for Success

Trending doubts
Give 10 examples of unisexual and bisexual flowers

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE
