
If \[\sin \left( {\pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right)\] , then which of the following is correct.
$
\left( a \right)\cos \theta = \dfrac{3}{{2\sqrt 2 }} \\
\left( b \right)\cos \left( {\theta - \dfrac{\pi }{2}} \right) = \dfrac{1}{{2\sqrt 2 }} \\
\left( c \right)\cos \left( {\theta - \dfrac{\pi }{4}} \right) = \dfrac{1}{{2\sqrt 2 }} \\
\left( d \right)\cos \left( {\theta + \dfrac{\pi }{4}} \right) = - \dfrac{1}{{2\sqrt 2 }} \\
$
Answer
615k+ views
Hint-In this question, we use the concept of trigonometric equations. We use the general solution, \[\cos x = \cos y \Rightarrow x = 2n\pi \pm y,n \in I\] . First we try to write a question in terms of the general equation then apply the formula of the trigonometric equation.
Complete step-by-step answer:
We have an equation \[\sin \left( {\pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right)\] and we have to write equation in term of general trigonometric equation.
\[\sin \left( {\pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right)\]
As we know, \[\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right)\]
\[ \Rightarrow \cos \left( {\dfrac{\pi }{2} - \pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right)\]
Now, we apply \[\cos x = \cos y \Rightarrow x = 2n\pi \pm y,n \in I\]
$ \Rightarrow \dfrac{\pi }{2} - \pi \cos \theta = 2n\pi \pm \pi \sin \theta ,n \in I$
This relation holds for any integer but now we use n=0 for easy calculation.
$
\Rightarrow \dfrac{\pi }{2} - \pi \cos \theta = \pm \pi \sin \theta \\
\Rightarrow \dfrac{1}{2} - \cos \theta = \pm \sin \theta \\
\Rightarrow \dfrac{1}{2} = \cos \theta \pm \sin \theta \\
$
Now, we multiply by $\dfrac{1}{{\sqrt 2 }}$ on both sides of the equation.
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} \times \cos \theta \pm \dfrac{1}{{\sqrt 2 }} \times \sin \theta = \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}\]
As we know, \[\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow \cos \dfrac{\pi }{4}\cos \theta \pm \sin \dfrac{\pi }{4}\sin \theta = \dfrac{1}{{2\sqrt 2 }}\]
If we take negative value, \[\cos \dfrac{\pi }{4}\cos \theta - \sin \dfrac{\pi }{4}\sin \theta = \dfrac{1}{{2\sqrt 2 }}\]
Now we use trigonometric identity, $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
\[ \Rightarrow \cos \left( {\theta + \dfrac{\pi }{4}} \right) = \dfrac{1}{{2\sqrt 2 }}\]
If we take positive value, \[\cos \dfrac{\pi }{4}\cos \theta + \sin \dfrac{\pi }{4}\sin \theta = \dfrac{1}{{2\sqrt 2 }}\]
Now we use trigonometric identity, $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
\[ \Rightarrow \cos \left( {\theta - \dfrac{\pi }{4}} \right) = \dfrac{1}{{2\sqrt 2 }}\]
So, the correct option is (c).
Note-In such types of problems we use some important points to solve questions in an easy way. First we use trigonometric general equations and equate angles for integer n=0 for easy calculation. Then we use trigonometric identities to solve the equation. So, we will get the required answer.
Complete step-by-step answer:
We have an equation \[\sin \left( {\pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right)\] and we have to write equation in term of general trigonometric equation.
\[\sin \left( {\pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right)\]
As we know, \[\sin \theta = \cos \left( {\dfrac{\pi }{2} - \theta } \right)\]
\[ \Rightarrow \cos \left( {\dfrac{\pi }{2} - \pi \cos \theta } \right) = \cos \left( {\pi \sin \theta } \right)\]
Now, we apply \[\cos x = \cos y \Rightarrow x = 2n\pi \pm y,n \in I\]
$ \Rightarrow \dfrac{\pi }{2} - \pi \cos \theta = 2n\pi \pm \pi \sin \theta ,n \in I$
This relation holds for any integer but now we use n=0 for easy calculation.
$
\Rightarrow \dfrac{\pi }{2} - \pi \cos \theta = \pm \pi \sin \theta \\
\Rightarrow \dfrac{1}{2} - \cos \theta = \pm \sin \theta \\
\Rightarrow \dfrac{1}{2} = \cos \theta \pm \sin \theta \\
$
Now, we multiply by $\dfrac{1}{{\sqrt 2 }}$ on both sides of the equation.
\[ \Rightarrow \dfrac{1}{{\sqrt 2 }} \times \cos \theta \pm \dfrac{1}{{\sqrt 2 }} \times \sin \theta = \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2}\]
As we know, \[\cos \dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow \cos \dfrac{\pi }{4}\cos \theta \pm \sin \dfrac{\pi }{4}\sin \theta = \dfrac{1}{{2\sqrt 2 }}\]
If we take negative value, \[\cos \dfrac{\pi }{4}\cos \theta - \sin \dfrac{\pi }{4}\sin \theta = \dfrac{1}{{2\sqrt 2 }}\]
Now we use trigonometric identity, $\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B$
\[ \Rightarrow \cos \left( {\theta + \dfrac{\pi }{4}} \right) = \dfrac{1}{{2\sqrt 2 }}\]
If we take positive value, \[\cos \dfrac{\pi }{4}\cos \theta + \sin \dfrac{\pi }{4}\sin \theta = \dfrac{1}{{2\sqrt 2 }}\]
Now we use trigonometric identity, $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$
\[ \Rightarrow \cos \left( {\theta - \dfrac{\pi }{4}} \right) = \dfrac{1}{{2\sqrt 2 }}\]
So, the correct option is (c).
Note-In such types of problems we use some important points to solve questions in an easy way. First we use trigonometric general equations and equate angles for integer n=0 for easy calculation. Then we use trigonometric identities to solve the equation. So, we will get the required answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

