
If $ \sin a\theta + \cos b\theta = 0 $ then the possible values of $ \theta $ form:
A. an AP
B. Two APs
C. One GP
D. Two GPs
Answer
558.3k+ views
Hint: We know that the cosine function $ \cos A $ can also be written in terms of sine function as $ \sin \left( {{{90}^ \circ } - A} \right) $ . As the given trigonometric function has a sine function and cosine function, convert the cosine function into sine using the given relation. And then find the values of $ \theta $ .
Complete step-by-step answer:
We are given a trigonometric equation $ \sin a\theta + \cos b\theta = 0 $ .
We have to find the values of $ \theta $ are in AP or in GP.
$ \sin a\theta + \cos b\theta = 0 \to eq\left( 1 \right) $
Here write $ \cos b\theta $ in terms of sine using the relation $ \cos A = \sin \left( {{{90}^ \circ } - A} \right) $ , here the value of A is $ b\theta $
So therefore,
$
\cos b\theta = \sin \left( {{{90}^ \circ } - b\theta } \right) \\
{90^ \circ } = \dfrac{\pi }{2}radians \\
\Rightarrow \cos b\theta = \sin \left( {\dfrac{\pi }{2} - b\theta } \right) \\
$
On substituting the above value in equation 1, we get
$
\sin a\theta + \sin \left( {\dfrac{\pi }{2} - b\theta } \right) = 0 \\
\Rightarrow \sin a\theta = - \sin \left( {\dfrac{\pi }{2} - b\theta } \right) \\
$
Sending the minus inside in the above right hand side term, which is $ - \sin \left( {\dfrac{\pi }{2} - b\theta } \right) $
$ \to \sin a\theta = \sin \left( {b\theta - \dfrac{\pi }{2}} \right) $
Both the sides, the functions are sine, so equate their angle measures.
$
a\theta = b\theta - \dfrac{\pi }{2} \\
\Rightarrow \dfrac{\pi }{2} = b\theta - a\theta \\
\Rightarrow \theta \left( {a - b} \right) = \dfrac{\pi }{2} \\
\Rightarrow \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} \\
\Rightarrow \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 2n\pi \\
$
When n is equal to 0, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 0 = \dfrac{\pi }{{2\left( {a - b} \right)}} $
When n is equal to 1, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 2\pi $
When n is equal to 2, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 4\pi $
When n is equal to 3, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 6\pi $
As we can see, for two every two consecutive values of $ \theta $ , there is a difference of $ 2\pi $ .
So this difference can also be called a common difference.
Therefore, we can say that the possible values of $ \theta $ are in an $AP$.
So, the correct answer is “Option A”.
Note: Here we have added $ 2n\pi $ to the value of $ \theta $ , because sine is a periodic function and its value repeats after every $ 2n\pi $ radians. And an AP is a sequence in which every term starting from the second term is obtained by adding a fixed value to its previous term; this fixed value is called common difference whereas a GP is a sequence in which every term starting from the second term is obtained by multiplying a fixed value to its previous term; this fixed value is called common ratio. So do not confuse an AP with a GP.
Complete step-by-step answer:
We are given a trigonometric equation $ \sin a\theta + \cos b\theta = 0 $ .
We have to find the values of $ \theta $ are in AP or in GP.
$ \sin a\theta + \cos b\theta = 0 \to eq\left( 1 \right) $
Here write $ \cos b\theta $ in terms of sine using the relation $ \cos A = \sin \left( {{{90}^ \circ } - A} \right) $ , here the value of A is $ b\theta $
So therefore,
$
\cos b\theta = \sin \left( {{{90}^ \circ } - b\theta } \right) \\
{90^ \circ } = \dfrac{\pi }{2}radians \\
\Rightarrow \cos b\theta = \sin \left( {\dfrac{\pi }{2} - b\theta } \right) \\
$
On substituting the above value in equation 1, we get
$
\sin a\theta + \sin \left( {\dfrac{\pi }{2} - b\theta } \right) = 0 \\
\Rightarrow \sin a\theta = - \sin \left( {\dfrac{\pi }{2} - b\theta } \right) \\
$
Sending the minus inside in the above right hand side term, which is $ - \sin \left( {\dfrac{\pi }{2} - b\theta } \right) $
$ \to \sin a\theta = \sin \left( {b\theta - \dfrac{\pi }{2}} \right) $
Both the sides, the functions are sine, so equate their angle measures.
$
a\theta = b\theta - \dfrac{\pi }{2} \\
\Rightarrow \dfrac{\pi }{2} = b\theta - a\theta \\
\Rightarrow \theta \left( {a - b} \right) = \dfrac{\pi }{2} \\
\Rightarrow \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} \\
\Rightarrow \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 2n\pi \\
$
When n is equal to 0, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 0 = \dfrac{\pi }{{2\left( {a - b} \right)}} $
When n is equal to 1, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 2\pi $
When n is equal to 2, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 4\pi $
When n is equal to 3, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 6\pi $
As we can see, for two every two consecutive values of $ \theta $ , there is a difference of $ 2\pi $ .
So this difference can also be called a common difference.
Therefore, we can say that the possible values of $ \theta $ are in an $AP$.
So, the correct answer is “Option A”.
Note: Here we have added $ 2n\pi $ to the value of $ \theta $ , because sine is a periodic function and its value repeats after every $ 2n\pi $ radians. And an AP is a sequence in which every term starting from the second term is obtained by adding a fixed value to its previous term; this fixed value is called common difference whereas a GP is a sequence in which every term starting from the second term is obtained by multiplying a fixed value to its previous term; this fixed value is called common ratio. So do not confuse an AP with a GP.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

