
If $ \sin a\theta + \cos b\theta = 0 $ then the possible values of $ \theta $ form:
A. an AP
B. Two APs
C. One GP
D. Two GPs
Answer
463.5k+ views
Hint: We know that the cosine function $ \cos A $ can also be written in terms of sine function as $ \sin \left( {{{90}^ \circ } - A} \right) $ . As the given trigonometric function has a sine function and cosine function, convert the cosine function into sine using the given relation. And then find the values of $ \theta $ .
Complete step-by-step answer:
We are given a trigonometric equation $ \sin a\theta + \cos b\theta = 0 $ .
We have to find the values of $ \theta $ are in AP or in GP.
$ \sin a\theta + \cos b\theta = 0 \to eq\left( 1 \right) $
Here write $ \cos b\theta $ in terms of sine using the relation $ \cos A = \sin \left( {{{90}^ \circ } - A} \right) $ , here the value of A is $ b\theta $
So therefore,
$
\cos b\theta = \sin \left( {{{90}^ \circ } - b\theta } \right) \\
{90^ \circ } = \dfrac{\pi }{2}radians \\
\Rightarrow \cos b\theta = \sin \left( {\dfrac{\pi }{2} - b\theta } \right) \\
$
On substituting the above value in equation 1, we get
$
\sin a\theta + \sin \left( {\dfrac{\pi }{2} - b\theta } \right) = 0 \\
\Rightarrow \sin a\theta = - \sin \left( {\dfrac{\pi }{2} - b\theta } \right) \\
$
Sending the minus inside in the above right hand side term, which is $ - \sin \left( {\dfrac{\pi }{2} - b\theta } \right) $
$ \to \sin a\theta = \sin \left( {b\theta - \dfrac{\pi }{2}} \right) $
Both the sides, the functions are sine, so equate their angle measures.
$
a\theta = b\theta - \dfrac{\pi }{2} \\
\Rightarrow \dfrac{\pi }{2} = b\theta - a\theta \\
\Rightarrow \theta \left( {a - b} \right) = \dfrac{\pi }{2} \\
\Rightarrow \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} \\
\Rightarrow \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 2n\pi \\
$
When n is equal to 0, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 0 = \dfrac{\pi }{{2\left( {a - b} \right)}} $
When n is equal to 1, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 2\pi $
When n is equal to 2, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 4\pi $
When n is equal to 3, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 6\pi $
As we can see, for two every two consecutive values of $ \theta $ , there is a difference of $ 2\pi $ .
So this difference can also be called a common difference.
Therefore, we can say that the possible values of $ \theta $ are in an $AP$.
So, the correct answer is “Option A”.
Note: Here we have added $ 2n\pi $ to the value of $ \theta $ , because sine is a periodic function and its value repeats after every $ 2n\pi $ radians. And an AP is a sequence in which every term starting from the second term is obtained by adding a fixed value to its previous term; this fixed value is called common difference whereas a GP is a sequence in which every term starting from the second term is obtained by multiplying a fixed value to its previous term; this fixed value is called common ratio. So do not confuse an AP with a GP.
Complete step-by-step answer:
We are given a trigonometric equation $ \sin a\theta + \cos b\theta = 0 $ .
We have to find the values of $ \theta $ are in AP or in GP.
$ \sin a\theta + \cos b\theta = 0 \to eq\left( 1 \right) $
Here write $ \cos b\theta $ in terms of sine using the relation $ \cos A = \sin \left( {{{90}^ \circ } - A} \right) $ , here the value of A is $ b\theta $
So therefore,
$
\cos b\theta = \sin \left( {{{90}^ \circ } - b\theta } \right) \\
{90^ \circ } = \dfrac{\pi }{2}radians \\
\Rightarrow \cos b\theta = \sin \left( {\dfrac{\pi }{2} - b\theta } \right) \\
$
On substituting the above value in equation 1, we get
$
\sin a\theta + \sin \left( {\dfrac{\pi }{2} - b\theta } \right) = 0 \\
\Rightarrow \sin a\theta = - \sin \left( {\dfrac{\pi }{2} - b\theta } \right) \\
$
Sending the minus inside in the above right hand side term, which is $ - \sin \left( {\dfrac{\pi }{2} - b\theta } \right) $
$ \to \sin a\theta = \sin \left( {b\theta - \dfrac{\pi }{2}} \right) $
Both the sides, the functions are sine, so equate their angle measures.
$
a\theta = b\theta - \dfrac{\pi }{2} \\
\Rightarrow \dfrac{\pi }{2} = b\theta - a\theta \\
\Rightarrow \theta \left( {a - b} \right) = \dfrac{\pi }{2} \\
\Rightarrow \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} \\
\Rightarrow \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 2n\pi \\
$
When n is equal to 0, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 0 = \dfrac{\pi }{{2\left( {a - b} \right)}} $
When n is equal to 1, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 2\pi $
When n is equal to 2, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 4\pi $
When n is equal to 3, $ \theta = \dfrac{\pi }{{2\left( {a - b} \right)}} + 6\pi $
As we can see, for two every two consecutive values of $ \theta $ , there is a difference of $ 2\pi $ .
So this difference can also be called a common difference.
Therefore, we can say that the possible values of $ \theta $ are in an $AP$.
So, the correct answer is “Option A”.
Note: Here we have added $ 2n\pi $ to the value of $ \theta $ , because sine is a periodic function and its value repeats after every $ 2n\pi $ radians. And an AP is a sequence in which every term starting from the second term is obtained by adding a fixed value to its previous term; this fixed value is called common difference whereas a GP is a sequence in which every term starting from the second term is obtained by multiplying a fixed value to its previous term; this fixed value is called common ratio. So do not confuse an AP with a GP.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Find the image of the point 38 about the line x+3y class 11 maths CBSE

Can anyone list 10 advantages and disadvantages of friction

Distinguish between Mitosis and Meiosis class 11 biology CBSE
