If $\sin 3\theta = \cos \left( {\theta - {6^0}} \right)$, where $3\theta $ and $\left( {\theta - {6^0}} \right)$ are acute, find the value of $\theta $.
Last updated date: 27th Mar 2023
•
Total views: 309.9k
•
Views today: 2.86k
Answer
309.9k+ views
Hint- Here, we will be using the trigonometric function \[\sin \phi = \cos \left( {{{90}^0} - \phi } \right)\].
Given, \[\sin 3\theta = \cos \left( {\theta - {6^0}} \right){\text{ }} \to {\text{(1)}}\]
We know that \[\sin \phi = \cos \left( {{{90}^0} - \phi } \right)\] where \[\phi \] is an acute angle.
As, \[3\theta \] is also acute angle so we can write \[\sin 3\theta = \cos \left( {{{90}^0} - 3\theta }
\right)\]
Therefore, equation (1) becomes
\[
\Rightarrow \cos \left( {{{90}^0} - 3\theta } \right) = \cos \left( {\theta - {6^0}} \right) \Rightarrow
{90^0} - 3\theta = \theta - {6^0} \Rightarrow 4\theta = {96^0} \\
\Rightarrow \theta = {24^0} \\
\]
Further also we have to check whether the angles \[3\theta \] and \[\left( {\theta - {6^0}} \right)\] are
coming acute angles or not.
For \[\theta = {24^0}\], \[3\theta = {72^0}\] and \[\left( {\theta - {6^0}} \right) = {18^0}\]
That means both the angles are coming acute so \[\theta = {24^0}\] which is the required acute angle.
Note- In these types of problems, we convert both the LHS and the RHS of the given equation into one
trigonometric function and then compare the angles to solve for the unknown.
Given, \[\sin 3\theta = \cos \left( {\theta - {6^0}} \right){\text{ }} \to {\text{(1)}}\]
We know that \[\sin \phi = \cos \left( {{{90}^0} - \phi } \right)\] where \[\phi \] is an acute angle.
As, \[3\theta \] is also acute angle so we can write \[\sin 3\theta = \cos \left( {{{90}^0} - 3\theta }
\right)\]
Therefore, equation (1) becomes
\[
\Rightarrow \cos \left( {{{90}^0} - 3\theta } \right) = \cos \left( {\theta - {6^0}} \right) \Rightarrow
{90^0} - 3\theta = \theta - {6^0} \Rightarrow 4\theta = {96^0} \\
\Rightarrow \theta = {24^0} \\
\]
Further also we have to check whether the angles \[3\theta \] and \[\left( {\theta - {6^0}} \right)\] are
coming acute angles or not.
For \[\theta = {24^0}\], \[3\theta = {72^0}\] and \[\left( {\theta - {6^0}} \right) = {18^0}\]
That means both the angles are coming acute so \[\theta = {24^0}\] which is the required acute angle.
Note- In these types of problems, we convert both the LHS and the RHS of the given equation into one
trigonometric function and then compare the angles to solve for the unknown.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
