
If ${\sin ^{ - 1}}{\text{x = y}}$, then
A. $0 \leqslant {\text{y}} \leqslant \pi $
B. $ - \dfrac{\pi }{2} \leqslant {\text{y}} \leqslant \dfrac{\pi }{2}$
C. $0 < {\text{y < }}\pi $
D. $ - \dfrac{\pi }{2} < {\text{y < }}\dfrac{\pi }{2}$
Answer
614.1k+ views
Hint: To solve this question we will write ${\sin ^{ - 1}}{\text{x = y}}$as ${\text{x = siny}}$and then draw the graph of siny and find the minimum and maximum value of siny and we will find the interval in which y lies.
Complete step by step answer:
Now, we have ${\sin ^{ - 1}}{\text{x = y}}$which can be written as
${\text{x = siny}}$
Now,
At 0, sin y = 0, at $\dfrac{\pi }{2}$, sin y = 0, at $\pi $, sin y = 0. Also, at $ - \dfrac{\pi }{2}$, sin y = -1
So, we will draw the graph of siny according to the above values.
Hint: To solve this question we will write ${\sin ^{ - 1}}{\text{x = y}}$as ${\text{x = siny}}$and then draw the graph of siny and find the minimum and maximum value of siny and we will find the interval in which y lies.
Now, we have ${\sin ^{ - 1}}{\text{x = y}}$which can be written as
${\text{x = siny}}$
Now,
At 0, sin y = 0, at $\dfrac{\pi }{2}$, sin y = 0, at $\pi $, sin y = 0. Also, at $ - \dfrac{\pi }{2}$, sin y = -1
So, we will draw the graph of siny according to the above values.
Now, from the graph of ${\text{x = siny}}$, we know that the maximum value of x is 1 and minimum value is -1, i.e.
$ - 1 \leqslant {\text{x}} \leqslant {\text{1}}$
As, ${\text{x = siny}}$, we get
$ - 1 \leqslant \sin {\text{y}} \leqslant {\text{1}}$
Taking the inverse trigonometric function ${\sin ^{ - 1}}$ in the above equation, we get
${\sin ^{ - 1}}( - 1) \leqslant {\sin ^{ - 1}}(\sin {\text{y)}} \leqslant {\text{si}}{{\text{n}}^{ - 1}}(1)$
As, ${\sin ^{ - 1}}( - 1){\text{ = - }}\dfrac{\pi }{2}$ and ${\sin ^{ - 1}}(1){\text{ = }}\dfrac{\pi }{2}$. Also, ${\sin ^{ - 1}}(\sin {\text{x) = x}}$
Therefore, we get
$ - \dfrac{\pi }{2} \leqslant {\text{y}} \leqslant \dfrac{\pi }{2}$
So, option (B) is correct.
Note: When we come up with such types of questions, we will rewrite the given function and remove all inverse functions from the expression. Then we will draw the graph of the expression formed. With the help of the graph drawn, we will find the interval of the function. The interval has extremum values between which the curve of the function oscillates for example the curve of sinx oscillates between -1 and 1 and has a minimum value of -1 and maximum value of 1.
Complete step by step answer:
Now, we have ${\sin ^{ - 1}}{\text{x = y}}$which can be written as
${\text{x = siny}}$
Now,
At 0, sin y = 0, at $\dfrac{\pi }{2}$, sin y = 0, at $\pi $, sin y = 0. Also, at $ - \dfrac{\pi }{2}$, sin y = -1
So, we will draw the graph of siny according to the above values.
Hint: To solve this question we will write ${\sin ^{ - 1}}{\text{x = y}}$as ${\text{x = siny}}$and then draw the graph of siny and find the minimum and maximum value of siny and we will find the interval in which y lies.
Now, we have ${\sin ^{ - 1}}{\text{x = y}}$which can be written as
${\text{x = siny}}$
Now,
At 0, sin y = 0, at $\dfrac{\pi }{2}$, sin y = 0, at $\pi $, sin y = 0. Also, at $ - \dfrac{\pi }{2}$, sin y = -1
So, we will draw the graph of siny according to the above values.
Now, from the graph of ${\text{x = siny}}$, we know that the maximum value of x is 1 and minimum value is -1, i.e.
$ - 1 \leqslant {\text{x}} \leqslant {\text{1}}$
As, ${\text{x = siny}}$, we get
$ - 1 \leqslant \sin {\text{y}} \leqslant {\text{1}}$
Taking the inverse trigonometric function ${\sin ^{ - 1}}$ in the above equation, we get
${\sin ^{ - 1}}( - 1) \leqslant {\sin ^{ - 1}}(\sin {\text{y)}} \leqslant {\text{si}}{{\text{n}}^{ - 1}}(1)$
As, ${\sin ^{ - 1}}( - 1){\text{ = - }}\dfrac{\pi }{2}$ and ${\sin ^{ - 1}}(1){\text{ = }}\dfrac{\pi }{2}$. Also, ${\sin ^{ - 1}}(\sin {\text{x) = x}}$
Therefore, we get
$ - \dfrac{\pi }{2} \leqslant {\text{y}} \leqslant \dfrac{\pi }{2}$
So, option (B) is correct.
Note: When we come up with such types of questions, we will rewrite the given function and remove all inverse functions from the expression. Then we will draw the graph of the expression formed. With the help of the graph drawn, we will find the interval of the function. The interval has extremum values between which the curve of the function oscillates for example the curve of sinx oscillates between -1 and 1 and has a minimum value of -1 and maximum value of 1.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

