
If ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2},$then write the value of $x + y + z.$
Answer
617.1k+ views
Hint: We need to know the range and basic values of inverse sine function to solve this problem.
Given ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2}$
Splitting R.H.S.
$ \Rightarrow {\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{\pi }{2} + \frac{\pi }{2} + \frac{\pi }{2}$
As the maximum value in the range of ${\sin ^{ - 1}}x$ is $\frac{\pi }{2}$
And here sum of three inverse of sine is $3 \times \frac{\pi }{2}$
i.e., every sine inverse function is equal to $\frac{\pi }{2}$ here
$ \Rightarrow {\sin ^{ - 1}}x = \frac{\pi }{2},{\sin ^{ - 1}}y = \frac{\pi }{2},{\sin ^{ - 1}}z = \frac{\pi }{2}$
$ \Rightarrow x = \sin \frac{\pi }{2},y = \sin \frac{\pi }{2},z = \sin \frac{\pi }{2}$
$ \Rightarrow x = 1,y = 1,z = 1$
$\therefore x + y + z = 1 + 1 + 1 = 3$
Note: The domain of sin inverse function is [-1, 1] and range is$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$. That means the maximum value that inverse sine function can take is $\frac{\pi }{2}$. If we observe that the given problem on the RHS values is $\frac{{3\pi }}{2}$ and on LHS we have a sum of three inverse sine functions. So we are splitting the RHS into three $\frac{\pi }{2}$s. The sum can achieve a value of $\frac{{3\pi }}{2}$, if and only if each inverse sine function takes their maximum value $\frac{\pi }{2}$. This is the logic we need to keep in mind while solving these kinds of problems.
Given ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2}$
Splitting R.H.S.
$ \Rightarrow {\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{\pi }{2} + \frac{\pi }{2} + \frac{\pi }{2}$
As the maximum value in the range of ${\sin ^{ - 1}}x$ is $\frac{\pi }{2}$
And here sum of three inverse of sine is $3 \times \frac{\pi }{2}$
i.e., every sine inverse function is equal to $\frac{\pi }{2}$ here
$ \Rightarrow {\sin ^{ - 1}}x = \frac{\pi }{2},{\sin ^{ - 1}}y = \frac{\pi }{2},{\sin ^{ - 1}}z = \frac{\pi }{2}$
$ \Rightarrow x = \sin \frac{\pi }{2},y = \sin \frac{\pi }{2},z = \sin \frac{\pi }{2}$
$ \Rightarrow x = 1,y = 1,z = 1$
$\therefore x + y + z = 1 + 1 + 1 = 3$
Note: The domain of sin inverse function is [-1, 1] and range is$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$. That means the maximum value that inverse sine function can take is $\frac{\pi }{2}$. If we observe that the given problem on the RHS values is $\frac{{3\pi }}{2}$ and on LHS we have a sum of three inverse sine functions. So we are splitting the RHS into three $\frac{\pi }{2}$s. The sum can achieve a value of $\frac{{3\pi }}{2}$, if and only if each inverse sine function takes their maximum value $\frac{\pi }{2}$. This is the logic we need to keep in mind while solving these kinds of problems.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

