
If ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2},$then write the value of $x + y + z.$
Answer
514.2k+ views
Hint: We need to know the range and basic values of inverse sine function to solve this problem.
Given ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2}$
Splitting R.H.S.
$ \Rightarrow {\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{\pi }{2} + \frac{\pi }{2} + \frac{\pi }{2}$
As the maximum value in the range of ${\sin ^{ - 1}}x$ is $\frac{\pi }{2}$
And here sum of three inverse of sine is $3 \times \frac{\pi }{2}$
i.e., every sine inverse function is equal to $\frac{\pi }{2}$ here
$ \Rightarrow {\sin ^{ - 1}}x = \frac{\pi }{2},{\sin ^{ - 1}}y = \frac{\pi }{2},{\sin ^{ - 1}}z = \frac{\pi }{2}$
$ \Rightarrow x = \sin \frac{\pi }{2},y = \sin \frac{\pi }{2},z = \sin \frac{\pi }{2}$
$ \Rightarrow x = 1,y = 1,z = 1$
$\therefore x + y + z = 1 + 1 + 1 = 3$
Note: The domain of sin inverse function is [-1, 1] and range is$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$. That means the maximum value that inverse sine function can take is $\frac{\pi }{2}$. If we observe that the given problem on the RHS values is $\frac{{3\pi }}{2}$ and on LHS we have a sum of three inverse sine functions. So we are splitting the RHS into three $\frac{\pi }{2}$s. The sum can achieve a value of $\frac{{3\pi }}{2}$, if and only if each inverse sine function takes their maximum value $\frac{\pi }{2}$. This is the logic we need to keep in mind while solving these kinds of problems.
Given ${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{{3\pi }}{2}$
Splitting R.H.S.
$ \Rightarrow {\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \frac{\pi }{2} + \frac{\pi }{2} + \frac{\pi }{2}$
As the maximum value in the range of ${\sin ^{ - 1}}x$ is $\frac{\pi }{2}$
And here sum of three inverse of sine is $3 \times \frac{\pi }{2}$
i.e., every sine inverse function is equal to $\frac{\pi }{2}$ here
$ \Rightarrow {\sin ^{ - 1}}x = \frac{\pi }{2},{\sin ^{ - 1}}y = \frac{\pi }{2},{\sin ^{ - 1}}z = \frac{\pi }{2}$
$ \Rightarrow x = \sin \frac{\pi }{2},y = \sin \frac{\pi }{2},z = \sin \frac{\pi }{2}$
$ \Rightarrow x = 1,y = 1,z = 1$
$\therefore x + y + z = 1 + 1 + 1 = 3$
Note: The domain of sin inverse function is [-1, 1] and range is$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$. That means the maximum value that inverse sine function can take is $\frac{\pi }{2}$. If we observe that the given problem on the RHS values is $\frac{{3\pi }}{2}$ and on LHS we have a sum of three inverse sine functions. So we are splitting the RHS into three $\frac{\pi }{2}$s. The sum can achieve a value of $\frac{{3\pi }}{2}$, if and only if each inverse sine function takes their maximum value $\frac{\pi }{2}$. This is the logic we need to keep in mind while solving these kinds of problems.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Soap bubble appears coloured due to the phenomenon class 11 physics CBSE

How is the brain protected from injury and shock class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

What is Environment class 11 chemistry CBSE
