
If ${{\sin }^{-1}}x+{{\sin }^{-1}}y+{{\sin }^{-1}}z=\dfrac{\pi }{2}$, then the value of ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz$ is
A. 0
B. 1
C. 2
D. 3
Answer
437.7k+ views
Hint: We first take the inverse forms in simple angle form. Then we take ratio cos and expand the series. The corresponding ratio gives the algebraic relation between $x,y,z$. We take the square and find the value of ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz$.
Complete step by step answer:
The given equation forms ${{\sin }^{-1}}x+{{\sin }^{-1}}y=\dfrac{\pi }{2}-{{\sin }^{-1}}z$.
We assume ${{\sin }^{-1}}x=a;{{\sin }^{-1}}y=b;{{\sin }^{-1}}z=c$. Therefore, $a+b=\dfrac{\pi }{2}-c$.We can also write
${{\sin }^{-1}}m={{\cos }^{-1}}\sqrt{1-{{m}^{2}}}\\
\Rightarrow {{\sin }^{-1}}n={{\cos }^{-1}}\sqrt{1-{{n}^{2}}}$.
We take the trigonometric ratio of cos for the relation $a+b=\dfrac{\pi }{2}-c$.
$\cos \left( a+b \right)=\cos \left( \dfrac{\pi }{2}-c \right)=\sin c$.
From ${{\sin }^{-1}}x={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}=a;{{\sin }^{-1}}y={{\cos }^{-1}}\sqrt{1-{{y}^{2}}}=b;{{\sin }^{-1}}z=c$, we get
\[\sin a=x,\cos \left( a \right)=\sqrt{1-{{x}^{2}}};\sin \left( b \right)=\sqrt{1-{{y}^{2}}};\sin \left( c \right)=z\].
We now use the formulas of $\cos \left( m+n \right)=\cos m\cos n-\sin m\sin n$.Therefore, we get
\[\cos \left( a+b \right)=\sin c \\
\Rightarrow \cos a\cos b-\sin a\sin b=\sin c \\
\Rightarrow \sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}-xy=z \\
\Rightarrow z+xy=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\ \]
We now take square both sides to get
\[z+xy=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\
\Rightarrow {{\left( z+xy \right)}^{2}}=\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right) \\ \Rightarrow {{z}^{2}}+{{x}^{2}}{{y}^{2}}+2xyz=1-{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}} \\
\therefore {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1 \\ \]
Hence, the correct option is B.
Note: We need to be careful about the domain of the inverse trigonometric ratios. Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi \pm a$ for $\cos \left( x \right)=\cos a$ where $0\le a\le \pi $.
Complete step by step answer:
The given equation forms ${{\sin }^{-1}}x+{{\sin }^{-1}}y=\dfrac{\pi }{2}-{{\sin }^{-1}}z$.
We assume ${{\sin }^{-1}}x=a;{{\sin }^{-1}}y=b;{{\sin }^{-1}}z=c$. Therefore, $a+b=\dfrac{\pi }{2}-c$.We can also write
${{\sin }^{-1}}m={{\cos }^{-1}}\sqrt{1-{{m}^{2}}}\\
\Rightarrow {{\sin }^{-1}}n={{\cos }^{-1}}\sqrt{1-{{n}^{2}}}$.
We take the trigonometric ratio of cos for the relation $a+b=\dfrac{\pi }{2}-c$.
$\cos \left( a+b \right)=\cos \left( \dfrac{\pi }{2}-c \right)=\sin c$.
From ${{\sin }^{-1}}x={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}=a;{{\sin }^{-1}}y={{\cos }^{-1}}\sqrt{1-{{y}^{2}}}=b;{{\sin }^{-1}}z=c$, we get
\[\sin a=x,\cos \left( a \right)=\sqrt{1-{{x}^{2}}};\sin \left( b \right)=\sqrt{1-{{y}^{2}}};\sin \left( c \right)=z\].
We now use the formulas of $\cos \left( m+n \right)=\cos m\cos n-\sin m\sin n$.Therefore, we get
\[\cos \left( a+b \right)=\sin c \\
\Rightarrow \cos a\cos b-\sin a\sin b=\sin c \\
\Rightarrow \sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}-xy=z \\
\Rightarrow z+xy=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\ \]
We now take square both sides to get
\[z+xy=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\
\Rightarrow {{\left( z+xy \right)}^{2}}=\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right) \\ \Rightarrow {{z}^{2}}+{{x}^{2}}{{y}^{2}}+2xyz=1-{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}} \\
\therefore {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1 \\ \]
Hence, the correct option is B.
Note: We need to be careful about the domain of the inverse trigonometric ratios. Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi \pm a$ for $\cos \left( x \right)=\cos a$ where $0\le a\le \pi $.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
