
If ${{\sin }^{-1}}x+{{\sin }^{-1}}y+{{\sin }^{-1}}z=\dfrac{\pi }{2}$, then the value of ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz$ is
A. 0
B. 1
C. 2
D. 3
Answer
485.7k+ views
Hint: We first take the inverse forms in simple angle form. Then we take ratio cos and expand the series. The corresponding ratio gives the algebraic relation between $x,y,z$. We take the square and find the value of ${{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz$.
Complete step by step answer:
The given equation forms ${{\sin }^{-1}}x+{{\sin }^{-1}}y=\dfrac{\pi }{2}-{{\sin }^{-1}}z$.
We assume ${{\sin }^{-1}}x=a;{{\sin }^{-1}}y=b;{{\sin }^{-1}}z=c$. Therefore, $a+b=\dfrac{\pi }{2}-c$.We can also write
${{\sin }^{-1}}m={{\cos }^{-1}}\sqrt{1-{{m}^{2}}}\\
\Rightarrow {{\sin }^{-1}}n={{\cos }^{-1}}\sqrt{1-{{n}^{2}}}$.
We take the trigonometric ratio of cos for the relation $a+b=\dfrac{\pi }{2}-c$.
$\cos \left( a+b \right)=\cos \left( \dfrac{\pi }{2}-c \right)=\sin c$.
From ${{\sin }^{-1}}x={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}=a;{{\sin }^{-1}}y={{\cos }^{-1}}\sqrt{1-{{y}^{2}}}=b;{{\sin }^{-1}}z=c$, we get
\[\sin a=x,\cos \left( a \right)=\sqrt{1-{{x}^{2}}};\sin \left( b \right)=\sqrt{1-{{y}^{2}}};\sin \left( c \right)=z\].
We now use the formulas of $\cos \left( m+n \right)=\cos m\cos n-\sin m\sin n$.Therefore, we get
\[\cos \left( a+b \right)=\sin c \\
\Rightarrow \cos a\cos b-\sin a\sin b=\sin c \\
\Rightarrow \sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}-xy=z \\
\Rightarrow z+xy=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\ \]
We now take square both sides to get
\[z+xy=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\
\Rightarrow {{\left( z+xy \right)}^{2}}=\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right) \\ \Rightarrow {{z}^{2}}+{{x}^{2}}{{y}^{2}}+2xyz=1-{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}} \\
\therefore {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1 \\ \]
Hence, the correct option is B.
Note: We need to be careful about the domain of the inverse trigonometric ratios. Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi \pm a$ for $\cos \left( x \right)=\cos a$ where $0\le a\le \pi $.
Complete step by step answer:
The given equation forms ${{\sin }^{-1}}x+{{\sin }^{-1}}y=\dfrac{\pi }{2}-{{\sin }^{-1}}z$.
We assume ${{\sin }^{-1}}x=a;{{\sin }^{-1}}y=b;{{\sin }^{-1}}z=c$. Therefore, $a+b=\dfrac{\pi }{2}-c$.We can also write
${{\sin }^{-1}}m={{\cos }^{-1}}\sqrt{1-{{m}^{2}}}\\
\Rightarrow {{\sin }^{-1}}n={{\cos }^{-1}}\sqrt{1-{{n}^{2}}}$.
We take the trigonometric ratio of cos for the relation $a+b=\dfrac{\pi }{2}-c$.
$\cos \left( a+b \right)=\cos \left( \dfrac{\pi }{2}-c \right)=\sin c$.
From ${{\sin }^{-1}}x={{\cos }^{-1}}\sqrt{1-{{x}^{2}}}=a;{{\sin }^{-1}}y={{\cos }^{-1}}\sqrt{1-{{y}^{2}}}=b;{{\sin }^{-1}}z=c$, we get
\[\sin a=x,\cos \left( a \right)=\sqrt{1-{{x}^{2}}};\sin \left( b \right)=\sqrt{1-{{y}^{2}}};\sin \left( c \right)=z\].
We now use the formulas of $\cos \left( m+n \right)=\cos m\cos n-\sin m\sin n$.Therefore, we get
\[\cos \left( a+b \right)=\sin c \\
\Rightarrow \cos a\cos b-\sin a\sin b=\sin c \\
\Rightarrow \sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}}-xy=z \\
\Rightarrow z+xy=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\ \]
We now take square both sides to get
\[z+xy=\sqrt{\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right)} \\
\Rightarrow {{\left( z+xy \right)}^{2}}=\left( 1-{{x}^{2}} \right)\left( 1-{{y}^{2}} \right) \\ \Rightarrow {{z}^{2}}+{{x}^{2}}{{y}^{2}}+2xyz=1-{{x}^{2}}-{{y}^{2}}+{{x}^{2}}{{y}^{2}} \\
\therefore {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2xyz=1 \\ \]
Hence, the correct option is B.
Note: We need to be careful about the domain of the inverse trigonometric ratios. Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi \pm a$ for $\cos \left( x \right)=\cos a$ where $0\le a\le \pi $.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

