
If $secA = x + \dfrac{1}{{4x}},x \ne 0$ then find the value of $(\operatorname{Sec} A + \operatorname{Tan} A)$.
Answer
574.2k+ views
Hint: First of all find the’$secA$’from the given condition, then just reverse it to get the value of$\operatorname{Cos} A$.
By using identity: $si{n^2}A + co{s^2}A = 1$, find $\operatorname{Sin} A$.
Now use the relationship between$sinA,cosA$and $tanA$to find$secA$.$$$$
Then substitute the values of both $tanA$and$secA$in the given equation.
$\therefore (tanA + secA) = 2x$
Complete step-by-step answer:
We have $secA = x + \dfrac{1}{{4x}},x \ne 0$
By taking L.C.M as $4x$, we get
$secA = x + \dfrac{1}{{4x}} = \dfrac{{4{x^2} + 1}}{{4x}}$
Therefore, $cosA = \dfrac{1}{{secA}} = \dfrac{{4x}}{{4{x^2} + 1}}$.
For any acute angle$A$, we have identity: $si{n^2}A + co{s^2}A = 1$.
Hence, $sinA = \sqrt {1 - co{s^2}A} $
Simply substitute the value of $\operatorname{Cos} A$in the above equation, we get
$sinA = \sqrt {1 - {{\left( {\dfrac{{4x}}{{4{x^2} + 1}}} \right)}^2}} $
$sinA = \sqrt {1 - \dfrac{{16{x^2}}}{{{{(4{x^2} + 1)}^2}}}} $
Taking L.C.M as ${(4{x^2} + 1)^2}$in the denominator
$sinA = \sqrt {\dfrac{{{{(4{x^2} + 1)}^2} - 16{x^2}}}{{{{(4{x^2} + 1)}^2}}}} $
$ \Rightarrow sinA = \sqrt {\dfrac{{{{(4{x^2} - 1)}^2}}}{{{{(4{x^2} + 1)}^2}}}} $
We can write the above equation after removing the square as
$sinA = \pm \dfrac{{(4{x^2} - 1)}}{{(4{x^2} + 1)}}$
If $sinA = \dfrac{{(4{x^2} - 1)}}{{(4{x^2} + 1)}}$then
We have
$secA + tanA = \dfrac{{4{x^2} + 1}}{{4x}} + \dfrac{{4{x^2} - 1}}{{4x}}$
After solving, we get
$secA + tanA = 2x$
If $sinA = - \dfrac{{(4{x^2} - 1)}}{{(4{x^2} + 1)}}$then
$secA + tanA = \dfrac{{4{x^2} + 1}}{{4x}} - \dfrac{\begin{gathered}
\\
(4{x^2} - 1) \\
\end{gathered} }{{4x}}$
On further solving we get,
$secA + tanA = \dfrac{1}{{2x}}$
Note: The trigonometric ratios of an acute angle in a right triangle express the relationship between the angles and the length of its sides.
Tangent of $\angle A = \dfrac{{Perpendicular}}{{Base}}$ i.e. $tanA = \dfrac{P}{B}$ ,
Cotangent of $\angle A = \dfrac{1}{{tanA}} = \dfrac{B}{P}$$\angle A = \dfrac{1}{{tanA}} = \dfrac{B}{P}$,
Secant of$\angle A = \dfrac{1}{{cosA}} = \dfrac{{Hypotenuse}}{{Base}} = \dfrac{H}{B}$and
For any acute angle $A$, we have identity: $si{n^2}A + co{s^2}A = 1$
By using identity: $si{n^2}A + co{s^2}A = 1$, find $\operatorname{Sin} A$.
Now use the relationship between$sinA,cosA$and $tanA$to find$secA$.$$$$
Then substitute the values of both $tanA$and$secA$in the given equation.
$\therefore (tanA + secA) = 2x$
Complete step-by-step answer:
We have $secA = x + \dfrac{1}{{4x}},x \ne 0$
By taking L.C.M as $4x$, we get
$secA = x + \dfrac{1}{{4x}} = \dfrac{{4{x^2} + 1}}{{4x}}$
Therefore, $cosA = \dfrac{1}{{secA}} = \dfrac{{4x}}{{4{x^2} + 1}}$.
For any acute angle$A$, we have identity: $si{n^2}A + co{s^2}A = 1$.
Hence, $sinA = \sqrt {1 - co{s^2}A} $
Simply substitute the value of $\operatorname{Cos} A$in the above equation, we get
$sinA = \sqrt {1 - {{\left( {\dfrac{{4x}}{{4{x^2} + 1}}} \right)}^2}} $
$sinA = \sqrt {1 - \dfrac{{16{x^2}}}{{{{(4{x^2} + 1)}^2}}}} $
Taking L.C.M as ${(4{x^2} + 1)^2}$in the denominator
$sinA = \sqrt {\dfrac{{{{(4{x^2} + 1)}^2} - 16{x^2}}}{{{{(4{x^2} + 1)}^2}}}} $
$ \Rightarrow sinA = \sqrt {\dfrac{{{{(4{x^2} - 1)}^2}}}{{{{(4{x^2} + 1)}^2}}}} $
We can write the above equation after removing the square as
$sinA = \pm \dfrac{{(4{x^2} - 1)}}{{(4{x^2} + 1)}}$
If $sinA = \dfrac{{(4{x^2} - 1)}}{{(4{x^2} + 1)}}$then
We have
$secA + tanA = \dfrac{{4{x^2} + 1}}{{4x}} + \dfrac{{4{x^2} - 1}}{{4x}}$
After solving, we get
$secA + tanA = 2x$
If $sinA = - \dfrac{{(4{x^2} - 1)}}{{(4{x^2} + 1)}}$then
$secA + tanA = \dfrac{{4{x^2} + 1}}{{4x}} - \dfrac{\begin{gathered}
\\
(4{x^2} - 1) \\
\end{gathered} }{{4x}}$
On further solving we get,
$secA + tanA = \dfrac{1}{{2x}}$
Note: The trigonometric ratios of an acute angle in a right triangle express the relationship between the angles and the length of its sides.
Tangent of $\angle A = \dfrac{{Perpendicular}}{{Base}}$ i.e. $tanA = \dfrac{P}{B}$ ,
Cotangent of $\angle A = \dfrac{1}{{tanA}} = \dfrac{B}{P}$$\angle A = \dfrac{1}{{tanA}} = \dfrac{B}{P}$,
Secant of$\angle A = \dfrac{1}{{cosA}} = \dfrac{{Hypotenuse}}{{Base}} = \dfrac{H}{B}$and
For any acute angle $A$, we have identity: $si{n^2}A + co{s^2}A = 1$
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

