If $\sec a + \tan a = p$, then show that $\sec a - \tan a = \dfrac{1}{p}$ . Hence find the value of $\cos a$ and $\sin a$.
Answer
364.2k+ views
Hint- For solving this problem use the basic identities of trigonometry such as ${\sec ^2}\theta - {\tan ^2}\theta = 1$ and ${\sin ^2}\theta + {\cos ^2}\theta = 1$.
Given that:
$ \Rightarrow \sec a + \tan a = p$…………………………….. (1)
As we know that
$
{a^2} - {b^2} = (a + b)(a - b) \\
{\sec ^2}a - {\tan ^2}a = 1 \\
$
Using above formula
$
\Rightarrow {\sec ^2}a - {\tan ^2}a = 1 \\
\Rightarrow (\sec a + \tan a)(\sec a - \tan a) = 1 \\
$
Using the value given in above equation, we get
$
\Rightarrow p(\sec a - \tan a) = 1 \\
\Rightarrow \sec a - \tan a = \dfrac{1}{p} \\
$………………………………… (2)
Hence, we have arrived at our first result.
Now, we have to find out the value of $\cos a$ and $\sin a$.
By adding equation (1) and (2) and further solving , we obtain
$
(\sec a + \tan a) + (\sec a - \tan a) = p + \dfrac{1}{p} \\
2\sec a = p + \dfrac{1}{p} \\
\sec a = \dfrac{{p + \dfrac{1}{p}}}{2} \\
$
As we know
\[\because \cos \theta = \dfrac{1}{{\sec \theta }}\]
$
\cos a = \dfrac{2}{{p + \dfrac{1}{p}}} \\
\cos a = \dfrac{{2p}}{{{p^2} + 1}} \\
$
As we know
$
\because {\sin ^2}a + {\cos ^2}a = 1 \\
\Rightarrow \sin a = \sqrt {1 - {{\cos }^2}a} \\
$
Using the value of $\cos a$ in above equation and further solving it, we get
$
\sin a = \sqrt {1 - \dfrac{{4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 + 2{p^2} + {p^4} - 4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 - 2{p^2} + {p^4}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{{{(1 - {p^2})}^2}}}{{{{(1 + {p^2})}^2}}}} {\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + {b^2} + 2ab\& {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right] \\
\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}} \\
$
So, the values of $\cos a = \dfrac{{2p}}{{1 + {p^2}}}$ and $\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}}$.
Note- Before solving these types of problems you must remember all the trigonometric identities and try to bring all the terms in a single variable. All the same terms will cancel out.
Given that:
$ \Rightarrow \sec a + \tan a = p$…………………………….. (1)
As we know that
$
{a^2} - {b^2} = (a + b)(a - b) \\
{\sec ^2}a - {\tan ^2}a = 1 \\
$
Using above formula
$
\Rightarrow {\sec ^2}a - {\tan ^2}a = 1 \\
\Rightarrow (\sec a + \tan a)(\sec a - \tan a) = 1 \\
$
Using the value given in above equation, we get
$
\Rightarrow p(\sec a - \tan a) = 1 \\
\Rightarrow \sec a - \tan a = \dfrac{1}{p} \\
$………………………………… (2)
Hence, we have arrived at our first result.
Now, we have to find out the value of $\cos a$ and $\sin a$.
By adding equation (1) and (2) and further solving , we obtain
$
(\sec a + \tan a) + (\sec a - \tan a) = p + \dfrac{1}{p} \\
2\sec a = p + \dfrac{1}{p} \\
\sec a = \dfrac{{p + \dfrac{1}{p}}}{2} \\
$
As we know
\[\because \cos \theta = \dfrac{1}{{\sec \theta }}\]
$
\cos a = \dfrac{2}{{p + \dfrac{1}{p}}} \\
\cos a = \dfrac{{2p}}{{{p^2} + 1}} \\
$
As we know
$
\because {\sin ^2}a + {\cos ^2}a = 1 \\
\Rightarrow \sin a = \sqrt {1 - {{\cos }^2}a} \\
$
Using the value of $\cos a$ in above equation and further solving it, we get
$
\sin a = \sqrt {1 - \dfrac{{4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 + 2{p^2} + {p^4} - 4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 - 2{p^2} + {p^4}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{{{(1 - {p^2})}^2}}}{{{{(1 + {p^2})}^2}}}} {\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + {b^2} + 2ab\& {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right] \\
\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}} \\
$
So, the values of $\cos a = \dfrac{{2p}}{{1 + {p^2}}}$ and $\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}}$.
Note- Before solving these types of problems you must remember all the trigonometric identities and try to bring all the terms in a single variable. All the same terms will cancel out.
Last updated date: 23rd Sep 2023
•
Total views: 364.2k
•
Views today: 5.64k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

What is the basic unit of classification class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
