
If $\sec a + \tan a = p$, then show that $\sec a - \tan a = \dfrac{1}{p}$ . Hence find the value of $\cos a$ and $\sin a$.
Answer
603.9k+ views
Hint- For solving this problem use the basic identities of trigonometry such as ${\sec ^2}\theta - {\tan ^2}\theta = 1$ and ${\sin ^2}\theta + {\cos ^2}\theta = 1$.
Given that:
$ \Rightarrow \sec a + \tan a = p$…………………………….. (1)
As we know that
$
{a^2} - {b^2} = (a + b)(a - b) \\
{\sec ^2}a - {\tan ^2}a = 1 \\
$
Using above formula
$
\Rightarrow {\sec ^2}a - {\tan ^2}a = 1 \\
\Rightarrow (\sec a + \tan a)(\sec a - \tan a) = 1 \\
$
Using the value given in above equation, we get
$
\Rightarrow p(\sec a - \tan a) = 1 \\
\Rightarrow \sec a - \tan a = \dfrac{1}{p} \\
$………………………………… (2)
Hence, we have arrived at our first result.
Now, we have to find out the value of $\cos a$ and $\sin a$.
By adding equation (1) and (2) and further solving , we obtain
$
(\sec a + \tan a) + (\sec a - \tan a) = p + \dfrac{1}{p} \\
2\sec a = p + \dfrac{1}{p} \\
\sec a = \dfrac{{p + \dfrac{1}{p}}}{2} \\
$
As we know
\[\because \cos \theta = \dfrac{1}{{\sec \theta }}\]
$
\cos a = \dfrac{2}{{p + \dfrac{1}{p}}} \\
\cos a = \dfrac{{2p}}{{{p^2} + 1}} \\
$
As we know
$
\because {\sin ^2}a + {\cos ^2}a = 1 \\
\Rightarrow \sin a = \sqrt {1 - {{\cos }^2}a} \\
$
Using the value of $\cos a$ in above equation and further solving it, we get
$
\sin a = \sqrt {1 - \dfrac{{4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 + 2{p^2} + {p^4} - 4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 - 2{p^2} + {p^4}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{{{(1 - {p^2})}^2}}}{{{{(1 + {p^2})}^2}}}} {\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + {b^2} + 2ab\& {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right] \\
\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}} \\
$
So, the values of $\cos a = \dfrac{{2p}}{{1 + {p^2}}}$ and $\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}}$.
Note- Before solving these types of problems you must remember all the trigonometric identities and try to bring all the terms in a single variable. All the same terms will cancel out.
Given that:
$ \Rightarrow \sec a + \tan a = p$…………………………….. (1)
As we know that
$
{a^2} - {b^2} = (a + b)(a - b) \\
{\sec ^2}a - {\tan ^2}a = 1 \\
$
Using above formula
$
\Rightarrow {\sec ^2}a - {\tan ^2}a = 1 \\
\Rightarrow (\sec a + \tan a)(\sec a - \tan a) = 1 \\
$
Using the value given in above equation, we get
$
\Rightarrow p(\sec a - \tan a) = 1 \\
\Rightarrow \sec a - \tan a = \dfrac{1}{p} \\
$………………………………… (2)
Hence, we have arrived at our first result.
Now, we have to find out the value of $\cos a$ and $\sin a$.
By adding equation (1) and (2) and further solving , we obtain
$
(\sec a + \tan a) + (\sec a - \tan a) = p + \dfrac{1}{p} \\
2\sec a = p + \dfrac{1}{p} \\
\sec a = \dfrac{{p + \dfrac{1}{p}}}{2} \\
$
As we know
\[\because \cos \theta = \dfrac{1}{{\sec \theta }}\]
$
\cos a = \dfrac{2}{{p + \dfrac{1}{p}}} \\
\cos a = \dfrac{{2p}}{{{p^2} + 1}} \\
$
As we know
$
\because {\sin ^2}a + {\cos ^2}a = 1 \\
\Rightarrow \sin a = \sqrt {1 - {{\cos }^2}a} \\
$
Using the value of $\cos a$ in above equation and further solving it, we get
$
\sin a = \sqrt {1 - \dfrac{{4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 + 2{p^2} + {p^4} - 4{p^2}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{1 - 2{p^2} + {p^4}}}{{1 + 2{p^2} + {p^4}}}} \\
= \sqrt {\dfrac{{{{(1 - {p^2})}^2}}}{{{{(1 + {p^2})}^2}}}} {\text{ }}\left[ {\because {{\left( {a + b} \right)}^2} = {a^2} + {b^2} + 2ab\& {{\left( {a - b} \right)}^2} = {a^2} + {b^2} - 2ab} \right] \\
\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}} \\
$
So, the values of $\cos a = \dfrac{{2p}}{{1 + {p^2}}}$ and $\sin a = \dfrac{{(1 - {p^2})}}{{(1 + {p^2})}}$.
Note- Before solving these types of problems you must remember all the trigonometric identities and try to bring all the terms in a single variable. All the same terms will cancel out.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

