Courses
Courses for Kids
Free study material
Free LIVE classes
More LIVE
Join Vedantu’s FREE Mastercalss

# If ${\sec ^2}\theta + {\tan ^2}\theta + 1 = 2$, then find the value of $\sec \left( { - \theta } \right)$:A. $- 2$B. $- \dfrac{1}{2}$C. $1$D. $\pm 1$ Verified
366k+ views
Hint : Solve using trigonometric identities.

Given that: ${\sec ^2}\theta + {\tan ^2}\theta + 1 = 2$
Converting the above equation in the terms of Sin and Cos, we get

$\Rightarrow \dfrac{1}{{{{\cos }^2}\theta }} + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} + 1 = 2{\text{ }}\left( {\because \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}{\text{ and }}\sec \theta = \dfrac{1}{{\cos \theta }}} \right) \\ \Rightarrow \dfrac{{1 + {{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = 2 \\ \Rightarrow \dfrac{{1 + 1}}{{{{\cos }^2}\theta }} = 2{\text{ }}\left( {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right) \\ \Rightarrow \dfrac{2}{{{{\cos }^2}\theta }} = 2 \\ \Rightarrow {\cos ^2}\theta = 1 \\ \Rightarrow \cos \theta = \pm 1{\text{ }} \ldots \, \ldots \left( 1 \right) \\$
We know that, $\cos \left( { - \theta } \right) = \cos \left( \theta \right)$
$\therefore \sec \left( { - \theta } \right) = \sec \left( \theta \right) = \dfrac{1}{{\cos \theta }}$
Put the value of $\cos \theta$ from equation $\left( 1 \right)$, we get
$\sec \left( { - \theta } \right) = \pm 1$

Note: In these types of problems, where there is no direct formula for the given trigonometric terms, one should always try to convert them to some trigonometric terms which have some relation using trigonometric relations and identities so as to make the problem easier to calculate.

Last updated date: 24th Sep 2023
Total views: 366k
Views today: 7.66k