Courses
Courses for Kids
Free study material
Free LIVE classes
More
Questions & Answers

If ${\sec ^2}\theta + {\tan ^2}\theta + 1 = 2$, then find the value of $\sec \left( { - \theta } \right)$:
A. \[ - 2\]
B. $ - \dfrac{1}{2}$
C. $1$
D. $ \pm 1$

Last updated date: 27th Mar 2023
Total views: 310.5k
Views today: 4.87k
Answer
VerifiedVerified
310.5k+ views
Hint : Solve using trigonometric identities.

Given that: ${\sec ^2}\theta + {\tan ^2}\theta + 1 = 2$
Converting the above equation in the terms of Sin and Cos, we get

$
   \Rightarrow \dfrac{1}{{{{\cos }^2}\theta }} + \dfrac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }} + 1 = 2{\text{ }}\left( {\because \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}{\text{ and }}\sec \theta = \dfrac{1}{{\cos \theta }}} \right) \\
   \Rightarrow \dfrac{{1 + {{\sin }^2}\theta + {{\cos }^2}\theta }}{{{{\cos }^2}\theta }} = 2 \\
   \Rightarrow \dfrac{{1 + 1}}{{{{\cos }^2}\theta }} = 2{\text{ }}\left( {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right) \\
   \Rightarrow \dfrac{2}{{{{\cos }^2}\theta }} = 2 \\
   \Rightarrow {\cos ^2}\theta = 1 \\
   \Rightarrow \cos \theta = \pm 1{\text{ }} \ldots \, \ldots \left( 1 \right) \\
$
We know that, $\cos \left( { - \theta } \right) = \cos \left( \theta \right)$
$\therefore \sec \left( { - \theta } \right) = \sec \left( \theta \right) = \dfrac{1}{{\cos \theta }}$
Put the value of $\cos \theta $ from equation $\left( 1 \right)$, we get
$\sec \left( { - \theta } \right) = \pm 1$

Note: In these types of problems, where there is no direct formula for the given trigonometric terms, one should always try to convert them to some trigonometric terms which have some relation using trigonometric relations and identities so as to make the problem easier to calculate.