# If ${{S}_{1}},{{S}_{2}}$ and ${{S}_{3}}$ are respectively the sum of n, 2n and 3n terms of a GP, then prove that ${{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}$.

Answer

Verified

363.6k+ views

Hint: Assume a geometric progression having its first term as a and the common ratio as r. Use the formula for sum of geometric progression i.e. $S=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$ and find the sum of n, 2n and 3n terms of this GP.

Before proceeding with the question, we must know the formula that will be required to solve this question.

For a geometric progression with its first term as a and the common ratio as r, the sum of the first n terms of this GP is given by the formula,

$S=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$ . . . . . . . . . . . . . . . (1)

In this question, we have to prove ${{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}$ where ${{S}_{1}},{{S}_{2}}$ and ${{S}_{3}}$ are respectively the sum of n, 2n and 3n terms of a GP.

Let us assume a geometric progression having its first term as a and the common ratio as r.

Using formula (1), the sum of n terms is equal to,

${{S}_{1}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$

Using formula (1), the sum of 2n terms is equal to,

\[{{S}_{2}}=\dfrac{a\left( {{r}^{2n}}-1 \right)}{r-1}\]

Using formula (1), the sum of 3n terms is equal to,

${{S}_{3}}=\dfrac{a\left( {{r}^{3n}}-1 \right)}{r-1}$

Since we have to prove ${{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}$, let us first find ${{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)$. Substituting ${{S}_{1}},{{S}_{2}}$ and ${{S}_{3}}$, we get,

$\begin{align}

& {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}\left( \dfrac{a\left( {{r}^{3n}}-1 \right)}{r-1}-\dfrac{a\left( {{r}^{2n}}-1 \right)}{r-1} \right) \\

& \Rightarrow {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}\left( \dfrac{a}{r-1} \right)\left( \left( {{r}^{3n}}-1 \right)-\left( {{r}^{2n}}-1 \right) \right) \\

& \Rightarrow {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( \dfrac{a}{r-1} \right)}^{2}}\left( {{r}^{n}}-1 \right)\left( {{r}^{3n}}-1-{{r}^{2n}}+1 \right) \\

& \Rightarrow {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( \dfrac{a}{r-1} \right)}^{2}}\left( {{r}^{n}}-1 \right)\left( {{r}^{3n}}-{{r}^{2n}} \right) \\

& \Rightarrow {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( \dfrac{a}{r-1} \right)}^{2}}\left( {{r}^{n}}-1 \right)\left( \left( {{r}^{2n}} \right)\left( {{r}^{n}}-1 \right) \right) \\

& \Rightarrow {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( \dfrac{a}{r-1} \right)}^{2}}\left( {{r}^{2n}} \right){{\left( {{r}^{n}}-1 \right)}^{2}}.............\left( 2 \right) \\

\end{align}$

Now, we will find ${{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}$. Substituting ${{S}_{1}}$ and ${{S}_{2}}$, we get,

\[\begin{align}

& {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a\left( {{r}^{2n}}-1 \right)}{r-1}-\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1} \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{\left( \left( {{r}^{2n}}-1 \right)-\left( {{r}^{n}}-1 \right) \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{\left( {{r}^{2n}}-1-{{r}^{n}}+1 \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{\left( {{r}^{2n}}-{{r}^{n}} \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{\left( {{r}^{n}}\left( {{r}^{n}}-1 \right) \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{\left( {{r}^{n}} \right)}^{2}}{{\left( {{r}^{n}}-1 \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{r}^{2n}}{{\left( {{r}^{n}}-1 \right)}^{2}}.....................\left( 3 \right) \\

\end{align}\]

Comparing equation (2) and equation (3), we can say,

${{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}$

Hence proved.

Note: This question can also be solved by assuming the first term of the GP as 1 instead of a variable a. If we assume the first term of the GP as 1, our calculations become much simpler than in the case we have assumed the first term as a.

__Complete step-by-step answer:__Before proceeding with the question, we must know the formula that will be required to solve this question.

For a geometric progression with its first term as a and the common ratio as r, the sum of the first n terms of this GP is given by the formula,

$S=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$ . . . . . . . . . . . . . . . (1)

In this question, we have to prove ${{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}$ where ${{S}_{1}},{{S}_{2}}$ and ${{S}_{3}}$ are respectively the sum of n, 2n and 3n terms of a GP.

Let us assume a geometric progression having its first term as a and the common ratio as r.

Using formula (1), the sum of n terms is equal to,

${{S}_{1}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$

Using formula (1), the sum of 2n terms is equal to,

\[{{S}_{2}}=\dfrac{a\left( {{r}^{2n}}-1 \right)}{r-1}\]

Using formula (1), the sum of 3n terms is equal to,

${{S}_{3}}=\dfrac{a\left( {{r}^{3n}}-1 \right)}{r-1}$

Since we have to prove ${{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}$, let us first find ${{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)$. Substituting ${{S}_{1}},{{S}_{2}}$ and ${{S}_{3}}$, we get,

$\begin{align}

& {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}\left( \dfrac{a\left( {{r}^{3n}}-1 \right)}{r-1}-\dfrac{a\left( {{r}^{2n}}-1 \right)}{r-1} \right) \\

& \Rightarrow {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}\left( \dfrac{a}{r-1} \right)\left( \left( {{r}^{3n}}-1 \right)-\left( {{r}^{2n}}-1 \right) \right) \\

& \Rightarrow {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( \dfrac{a}{r-1} \right)}^{2}}\left( {{r}^{n}}-1 \right)\left( {{r}^{3n}}-1-{{r}^{2n}}+1 \right) \\

& \Rightarrow {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( \dfrac{a}{r-1} \right)}^{2}}\left( {{r}^{n}}-1 \right)\left( {{r}^{3n}}-{{r}^{2n}} \right) \\

& \Rightarrow {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( \dfrac{a}{r-1} \right)}^{2}}\left( {{r}^{n}}-1 \right)\left( \left( {{r}^{2n}} \right)\left( {{r}^{n}}-1 \right) \right) \\

& \Rightarrow {{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( \dfrac{a}{r-1} \right)}^{2}}\left( {{r}^{2n}} \right){{\left( {{r}^{n}}-1 \right)}^{2}}.............\left( 2 \right) \\

\end{align}$

Now, we will find ${{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}$. Substituting ${{S}_{1}}$ and ${{S}_{2}}$, we get,

\[\begin{align}

& {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a\left( {{r}^{2n}}-1 \right)}{r-1}-\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1} \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{\left( \left( {{r}^{2n}}-1 \right)-\left( {{r}^{n}}-1 \right) \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{\left( {{r}^{2n}}-1-{{r}^{n}}+1 \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{\left( {{r}^{2n}}-{{r}^{n}} \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{\left( {{r}^{n}}\left( {{r}^{n}}-1 \right) \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{\left( {{r}^{n}} \right)}^{2}}{{\left( {{r}^{n}}-1 \right)}^{2}} \\

& \Rightarrow {{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}={{\left( \dfrac{a}{r-1} \right)}^{2}}{{r}^{2n}}{{\left( {{r}^{n}}-1 \right)}^{2}}.....................\left( 3 \right) \\

\end{align}\]

Comparing equation (2) and equation (3), we can say,

${{S}_{1}}\left( {{S}_{3}}-{{S}_{2}} \right)={{\left( {{S}_{2}}-{{S}_{1}} \right)}^{2}}$

Hence proved.

Note: This question can also be solved by assuming the first term of the GP as 1 instead of a variable a. If we assume the first term of the GP as 1, our calculations become much simpler than in the case we have assumed the first term as a.

Last updated date: 03rd Oct 2023

â€¢

Total views: 363.6k

â€¢

Views today: 10.63k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers