
If ${{\text{S}}_1}$ and ${{\text{S}}_2}$ are respectively the sets of local minimum and local maximum points of the functions $f\left( x \right) = 9{x^4} + 12{x^3} - 36{x^2} + 25,x \in R$, then write the elements contained by the two sets ${{\text{S}}_1}$ and ${{\text{S}}_2}$.
$
{\text{A}}{\text{. }}{{\text{S}}_1} = \left\{ { - 2,1} \right\};{{\text{S}}_2} = \left\{ 0 \right\} \\
{\text{B}}{\text{. }}{{\text{S}}_1} = \left\{ { - 2,0} \right\};{{\text{S}}_2} = \left\{ 1 \right\} \\
{\text{C}}{\text{. }}{{\text{S}}_1} = \left\{ { - 2} \right\};{{\text{S}}_2} = \left\{ {0,1} \right\} \\
{\text{D}}{\text{. }}{{\text{S}}_1} = \left\{ { - 1} \right\};{{\text{S}}_2} = \left\{ {0,2} \right\} \\
$
Answer
603k+ views
Hint- Here, we will proceed by differentiating the given function once and then putting \[f'\left( x \right) = 0\] in order to obtain the values of x where local maxima and local minima can occur according to the sign of \[f''\left( x \right)\].
Complete step-by-step answer:
The given function in x is $f\left( x \right) = 9{x^4} + 12{x^3} - 36{x^2} + 25{\text{ }} \to {\text{(1)}},x \in R$
It is also given that ${{\text{S}}_1}$ corresponds to the set of values of x where local minima occurs and ${{\text{S}}_2}$ corresponds to the set of values of x where local maxima occurs.
Let us differentiate the given function with respect to x, we get
\[
\Rightarrow \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} = \dfrac{d}{{dx}}\left[ {9{x^4} + 12{x^3} - 36{x^2} + 25} \right] \\
\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left[ {9{x^4}} \right] + \dfrac{d}{{dx}}\left[ {12{x^3}} \right] - \dfrac{d}{{dx}}\left[ {36{x^2}} \right] + \dfrac{d}{{dx}}\left[ {25} \right] \\
\Rightarrow f'\left( x \right) = 9\dfrac{d}{{dx}}\left[ {{x^4}} \right] + 12\dfrac{d}{{dx}}\left[ {{x^3}} \right] - 36\dfrac{d}{{dx}}\left[ {{x^2}} \right] + 0 \\
\Rightarrow f'\left( x \right) = 9\left( {4{x^3}} \right) + 12\left( {3{x^2}} \right) - 36\left( {2x} \right) \\
\Rightarrow f'\left( x \right) = 36{x^3} + 36{x^2} - 72x \\
\Rightarrow f'\left( x \right) = 36x\left( {{x^2} + x - 2} \right){\text{ }} \to {\text{(2)}} \\
\]
Since, we know that local maxima or local minima are the points where local maximum and local minimum values will be occurring. At local maxima and local minima, for any function f(x) the necessary condition is \[f'\left( x \right) = 0\].
By putting \[f'\left( x \right) = 0\] in equation (2), we get
\[
\Rightarrow 0 = 36x\left( {{x^2} + x - 2} \right) \\
\Rightarrow x\left( {{x^2} + x - 2} \right) = 0 \\
\Rightarrow x\left( {{x^2} - x + 2x - 2} \right) = 0 \\
\Rightarrow x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0 \\
\Rightarrow x\left( {x - 1} \right)\left( {x + 2} \right) = 0 \\
\]
From the above equation, we have
x=0 or $
x - 1 = 0 \\
\Rightarrow x = 1 \\
$ or $
x + 2 = 0 \\
\Rightarrow x = - 2 \\
$
So, the points where maxima or minima can occur are x=0,1,-2
Also we know that for any function f(x) to attain local maxima at a point x=a, \[f''\left( a \right) < 0\] and for this function f(x) to attain local minima at a point x=b, \[f''\left( b \right) > 0\].
By differentiating the equation (2) both sides with respect to x, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left[ {f'\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ {36x\left( {{x^2} + x - 2} \right)} \right] \\
\Rightarrow f''\left( x \right) = 36\dfrac{d}{{dx}}\left[ {{x^3} + {x^2} - 2x} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {\dfrac{d}{{dx}}\left[ {{x^3}} \right] + \dfrac{d}{{dx}}\left[ {{x^2}} \right] - 2\dfrac{{dx}}{{dx}}} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {3{x^2} + 2x - 2} \right]{\text{ }} \to {\text{(3)}} \\
\]
Put x=0 in equation (3), we get
\[ \Rightarrow f''\left( 0 \right) = 36\left[ {3{{\left( 0 \right)}^2} + 2\left( 0 \right) - 2} \right] = - 72\]
Clearly, \[f''\left( 0 \right) < 0\] so x=0 is a point of local maxima i.e., corresponding to point x=0, the given function f(x) has local maximum value. So, x=0 is a value in the set ${{\text{S}}_2}$.
Put x=1 in equation (3), we get
\[ \Rightarrow f''\left( 1 \right) = 36\left[ {3{{\left( 1 \right)}^2} + 2\left( 1 \right) - 2} \right] = 36\left[ 3 \right] = 108\]
Clearly, \[f''\left( 1 \right) > 0\] so x=1 is a point of local minima i.e., corresponding to point x=1, the given function f(x) has local minimum value. So, x=1 is a value in the set ${{\text{S}}_1}$.
Put x=-2 in equation (3), we get
\[ \Rightarrow f''\left( -2 \right) = 36\left[ {3{{\left( { - 2} \right)}^2} + 2\left( { - 2} \right) - 2} \right] = 36\left[ 6 \right] = 216\]
Clearly, \[f''\left( -2 \right) > 0\] so x=-2 is a point of local minima i.e., corresponding to point x=-2, the given function f(x) has local minimum value. So, x=-2 is a value in the set ${{\text{S}}_1}$.
So, set ${{\text{S}}_1} = \left\{ { - 2,1} \right\};{{\text{S}}_2} = \left\{ 0 \right\}$
Hence, option A is correct.
Note- In this particular problem, we have used second derivative test i.e., if \[f''\left( a \right) < 0\], then x=a is a point of local maxima and if \[f''\left( a \right) > 0\], then x=a is a point of local minima. Also, if \[f''\left( a \right) = 0\]occurs then x=a is a point of inflection. Here, the local maximum value of function f(x) is obtained by substituting x=0 in the function and the local minimum values of f(x) is obtained by substituting x=-2 and x=1 in the function.
Complete step-by-step answer:
The given function in x is $f\left( x \right) = 9{x^4} + 12{x^3} - 36{x^2} + 25{\text{ }} \to {\text{(1)}},x \in R$
It is also given that ${{\text{S}}_1}$ corresponds to the set of values of x where local minima occurs and ${{\text{S}}_2}$ corresponds to the set of values of x where local maxima occurs.
Let us differentiate the given function with respect to x, we get
\[
\Rightarrow \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} = \dfrac{d}{{dx}}\left[ {9{x^4} + 12{x^3} - 36{x^2} + 25} \right] \\
\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left[ {9{x^4}} \right] + \dfrac{d}{{dx}}\left[ {12{x^3}} \right] - \dfrac{d}{{dx}}\left[ {36{x^2}} \right] + \dfrac{d}{{dx}}\left[ {25} \right] \\
\Rightarrow f'\left( x \right) = 9\dfrac{d}{{dx}}\left[ {{x^4}} \right] + 12\dfrac{d}{{dx}}\left[ {{x^3}} \right] - 36\dfrac{d}{{dx}}\left[ {{x^2}} \right] + 0 \\
\Rightarrow f'\left( x \right) = 9\left( {4{x^3}} \right) + 12\left( {3{x^2}} \right) - 36\left( {2x} \right) \\
\Rightarrow f'\left( x \right) = 36{x^3} + 36{x^2} - 72x \\
\Rightarrow f'\left( x \right) = 36x\left( {{x^2} + x - 2} \right){\text{ }} \to {\text{(2)}} \\
\]
Since, we know that local maxima or local minima are the points where local maximum and local minimum values will be occurring. At local maxima and local minima, for any function f(x) the necessary condition is \[f'\left( x \right) = 0\].
By putting \[f'\left( x \right) = 0\] in equation (2), we get
\[
\Rightarrow 0 = 36x\left( {{x^2} + x - 2} \right) \\
\Rightarrow x\left( {{x^2} + x - 2} \right) = 0 \\
\Rightarrow x\left( {{x^2} - x + 2x - 2} \right) = 0 \\
\Rightarrow x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0 \\
\Rightarrow x\left( {x - 1} \right)\left( {x + 2} \right) = 0 \\
\]
From the above equation, we have
x=0 or $
x - 1 = 0 \\
\Rightarrow x = 1 \\
$ or $
x + 2 = 0 \\
\Rightarrow x = - 2 \\
$
So, the points where maxima or minima can occur are x=0,1,-2
Also we know that for any function f(x) to attain local maxima at a point x=a, \[f''\left( a \right) < 0\] and for this function f(x) to attain local minima at a point x=b, \[f''\left( b \right) > 0\].
By differentiating the equation (2) both sides with respect to x, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left[ {f'\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ {36x\left( {{x^2} + x - 2} \right)} \right] \\
\Rightarrow f''\left( x \right) = 36\dfrac{d}{{dx}}\left[ {{x^3} + {x^2} - 2x} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {\dfrac{d}{{dx}}\left[ {{x^3}} \right] + \dfrac{d}{{dx}}\left[ {{x^2}} \right] - 2\dfrac{{dx}}{{dx}}} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {3{x^2} + 2x - 2} \right]{\text{ }} \to {\text{(3)}} \\
\]
Put x=0 in equation (3), we get
\[ \Rightarrow f''\left( 0 \right) = 36\left[ {3{{\left( 0 \right)}^2} + 2\left( 0 \right) - 2} \right] = - 72\]
Clearly, \[f''\left( 0 \right) < 0\] so x=0 is a point of local maxima i.e., corresponding to point x=0, the given function f(x) has local maximum value. So, x=0 is a value in the set ${{\text{S}}_2}$.
Put x=1 in equation (3), we get
\[ \Rightarrow f''\left( 1 \right) = 36\left[ {3{{\left( 1 \right)}^2} + 2\left( 1 \right) - 2} \right] = 36\left[ 3 \right] = 108\]
Clearly, \[f''\left( 1 \right) > 0\] so x=1 is a point of local minima i.e., corresponding to point x=1, the given function f(x) has local minimum value. So, x=1 is a value in the set ${{\text{S}}_1}$.
Put x=-2 in equation (3), we get
\[ \Rightarrow f''\left( -2 \right) = 36\left[ {3{{\left( { - 2} \right)}^2} + 2\left( { - 2} \right) - 2} \right] = 36\left[ 6 \right] = 216\]
Clearly, \[f''\left( -2 \right) > 0\] so x=-2 is a point of local minima i.e., corresponding to point x=-2, the given function f(x) has local minimum value. So, x=-2 is a value in the set ${{\text{S}}_1}$.
So, set ${{\text{S}}_1} = \left\{ { - 2,1} \right\};{{\text{S}}_2} = \left\{ 0 \right\}$
Hence, option A is correct.
Note- In this particular problem, we have used second derivative test i.e., if \[f''\left( a \right) < 0\], then x=a is a point of local maxima and if \[f''\left( a \right) > 0\], then x=a is a point of local minima. Also, if \[f''\left( a \right) = 0\]occurs then x=a is a point of inflection. Here, the local maximum value of function f(x) is obtained by substituting x=0 in the function and the local minimum values of f(x) is obtained by substituting x=-2 and x=1 in the function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

