Answer
Verified
493.2k+ views
Hint- Here, we will proceed by differentiating the given function once and then putting \[f'\left( x \right) = 0\] in order to obtain the values of x where local maxima and local minima can occur according to the sign of \[f''\left( x \right)\].
Complete step-by-step answer:
The given function in x is $f\left( x \right) = 9{x^4} + 12{x^3} - 36{x^2} + 25{\text{ }} \to {\text{(1)}},x \in R$
It is also given that ${{\text{S}}_1}$ corresponds to the set of values of x where local minima occurs and ${{\text{S}}_2}$ corresponds to the set of values of x where local maxima occurs.
Let us differentiate the given function with respect to x, we get
\[
\Rightarrow \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} = \dfrac{d}{{dx}}\left[ {9{x^4} + 12{x^3} - 36{x^2} + 25} \right] \\
\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left[ {9{x^4}} \right] + \dfrac{d}{{dx}}\left[ {12{x^3}} \right] - \dfrac{d}{{dx}}\left[ {36{x^2}} \right] + \dfrac{d}{{dx}}\left[ {25} \right] \\
\Rightarrow f'\left( x \right) = 9\dfrac{d}{{dx}}\left[ {{x^4}} \right] + 12\dfrac{d}{{dx}}\left[ {{x^3}} \right] - 36\dfrac{d}{{dx}}\left[ {{x^2}} \right] + 0 \\
\Rightarrow f'\left( x \right) = 9\left( {4{x^3}} \right) + 12\left( {3{x^2}} \right) - 36\left( {2x} \right) \\
\Rightarrow f'\left( x \right) = 36{x^3} + 36{x^2} - 72x \\
\Rightarrow f'\left( x \right) = 36x\left( {{x^2} + x - 2} \right){\text{ }} \to {\text{(2)}} \\
\]
Since, we know that local maxima or local minima are the points where local maximum and local minimum values will be occurring. At local maxima and local minima, for any function f(x) the necessary condition is \[f'\left( x \right) = 0\].
By putting \[f'\left( x \right) = 0\] in equation (2), we get
\[
\Rightarrow 0 = 36x\left( {{x^2} + x - 2} \right) \\
\Rightarrow x\left( {{x^2} + x - 2} \right) = 0 \\
\Rightarrow x\left( {{x^2} - x + 2x - 2} \right) = 0 \\
\Rightarrow x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0 \\
\Rightarrow x\left( {x - 1} \right)\left( {x + 2} \right) = 0 \\
\]
From the above equation, we have
x=0 or $
x - 1 = 0 \\
\Rightarrow x = 1 \\
$ or $
x + 2 = 0 \\
\Rightarrow x = - 2 \\
$
So, the points where maxima or minima can occur are x=0,1,-2
Also we know that for any function f(x) to attain local maxima at a point x=a, \[f''\left( a \right) < 0\] and for this function f(x) to attain local minima at a point x=b, \[f''\left( b \right) > 0\].
By differentiating the equation (2) both sides with respect to x, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left[ {f'\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ {36x\left( {{x^2} + x - 2} \right)} \right] \\
\Rightarrow f''\left( x \right) = 36\dfrac{d}{{dx}}\left[ {{x^3} + {x^2} - 2x} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {\dfrac{d}{{dx}}\left[ {{x^3}} \right] + \dfrac{d}{{dx}}\left[ {{x^2}} \right] - 2\dfrac{{dx}}{{dx}}} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {3{x^2} + 2x - 2} \right]{\text{ }} \to {\text{(3)}} \\
\]
Put x=0 in equation (3), we get
\[ \Rightarrow f''\left( 0 \right) = 36\left[ {3{{\left( 0 \right)}^2} + 2\left( 0 \right) - 2} \right] = - 72\]
Clearly, \[f''\left( 0 \right) < 0\] so x=0 is a point of local maxima i.e., corresponding to point x=0, the given function f(x) has local maximum value. So, x=0 is a value in the set ${{\text{S}}_2}$.
Put x=1 in equation (3), we get
\[ \Rightarrow f''\left( 1 \right) = 36\left[ {3{{\left( 1 \right)}^2} + 2\left( 1 \right) - 2} \right] = 36\left[ 3 \right] = 108\]
Clearly, \[f''\left( 1 \right) > 0\] so x=1 is a point of local minima i.e., corresponding to point x=1, the given function f(x) has local minimum value. So, x=1 is a value in the set ${{\text{S}}_1}$.
Put x=-2 in equation (3), we get
\[ \Rightarrow f''\left( -2 \right) = 36\left[ {3{{\left( { - 2} \right)}^2} + 2\left( { - 2} \right) - 2} \right] = 36\left[ 6 \right] = 216\]
Clearly, \[f''\left( -2 \right) > 0\] so x=-2 is a point of local minima i.e., corresponding to point x=-2, the given function f(x) has local minimum value. So, x=-2 is a value in the set ${{\text{S}}_1}$.
So, set ${{\text{S}}_1} = \left\{ { - 2,1} \right\};{{\text{S}}_2} = \left\{ 0 \right\}$
Hence, option A is correct.
Note- In this particular problem, we have used second derivative test i.e., if \[f''\left( a \right) < 0\], then x=a is a point of local maxima and if \[f''\left( a \right) > 0\], then x=a is a point of local minima. Also, if \[f''\left( a \right) = 0\]occurs then x=a is a point of inflection. Here, the local maximum value of function f(x) is obtained by substituting x=0 in the function and the local minimum values of f(x) is obtained by substituting x=-2 and x=1 in the function.
Complete step-by-step answer:
The given function in x is $f\left( x \right) = 9{x^4} + 12{x^3} - 36{x^2} + 25{\text{ }} \to {\text{(1)}},x \in R$
It is also given that ${{\text{S}}_1}$ corresponds to the set of values of x where local minima occurs and ${{\text{S}}_2}$ corresponds to the set of values of x where local maxima occurs.
Let us differentiate the given function with respect to x, we get
\[
\Rightarrow \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} = \dfrac{d}{{dx}}\left[ {9{x^4} + 12{x^3} - 36{x^2} + 25} \right] \\
\Rightarrow f'\left( x \right) = \dfrac{d}{{dx}}\left[ {9{x^4}} \right] + \dfrac{d}{{dx}}\left[ {12{x^3}} \right] - \dfrac{d}{{dx}}\left[ {36{x^2}} \right] + \dfrac{d}{{dx}}\left[ {25} \right] \\
\Rightarrow f'\left( x \right) = 9\dfrac{d}{{dx}}\left[ {{x^4}} \right] + 12\dfrac{d}{{dx}}\left[ {{x^3}} \right] - 36\dfrac{d}{{dx}}\left[ {{x^2}} \right] + 0 \\
\Rightarrow f'\left( x \right) = 9\left( {4{x^3}} \right) + 12\left( {3{x^2}} \right) - 36\left( {2x} \right) \\
\Rightarrow f'\left( x \right) = 36{x^3} + 36{x^2} - 72x \\
\Rightarrow f'\left( x \right) = 36x\left( {{x^2} + x - 2} \right){\text{ }} \to {\text{(2)}} \\
\]
Since, we know that local maxima or local minima are the points where local maximum and local minimum values will be occurring. At local maxima and local minima, for any function f(x) the necessary condition is \[f'\left( x \right) = 0\].
By putting \[f'\left( x \right) = 0\] in equation (2), we get
\[
\Rightarrow 0 = 36x\left( {{x^2} + x - 2} \right) \\
\Rightarrow x\left( {{x^2} + x - 2} \right) = 0 \\
\Rightarrow x\left( {{x^2} - x + 2x - 2} \right) = 0 \\
\Rightarrow x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0 \\
\Rightarrow x\left( {x - 1} \right)\left( {x + 2} \right) = 0 \\
\]
From the above equation, we have
x=0 or $
x - 1 = 0 \\
\Rightarrow x = 1 \\
$ or $
x + 2 = 0 \\
\Rightarrow x = - 2 \\
$
So, the points where maxima or minima can occur are x=0,1,-2
Also we know that for any function f(x) to attain local maxima at a point x=a, \[f''\left( a \right) < 0\] and for this function f(x) to attain local minima at a point x=b, \[f''\left( b \right) > 0\].
By differentiating the equation (2) both sides with respect to x, we get
\[
\Rightarrow \dfrac{d}{{dx}}\left[ {f'\left( x \right)} \right] = \dfrac{d}{{dx}}\left[ {36x\left( {{x^2} + x - 2} \right)} \right] \\
\Rightarrow f''\left( x \right) = 36\dfrac{d}{{dx}}\left[ {{x^3} + {x^2} - 2x} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {\dfrac{d}{{dx}}\left[ {{x^3}} \right] + \dfrac{d}{{dx}}\left[ {{x^2}} \right] - 2\dfrac{{dx}}{{dx}}} \right] \\
\Rightarrow f''\left( x \right) = 36\left[ {3{x^2} + 2x - 2} \right]{\text{ }} \to {\text{(3)}} \\
\]
Put x=0 in equation (3), we get
\[ \Rightarrow f''\left( 0 \right) = 36\left[ {3{{\left( 0 \right)}^2} + 2\left( 0 \right) - 2} \right] = - 72\]
Clearly, \[f''\left( 0 \right) < 0\] so x=0 is a point of local maxima i.e., corresponding to point x=0, the given function f(x) has local maximum value. So, x=0 is a value in the set ${{\text{S}}_2}$.
Put x=1 in equation (3), we get
\[ \Rightarrow f''\left( 1 \right) = 36\left[ {3{{\left( 1 \right)}^2} + 2\left( 1 \right) - 2} \right] = 36\left[ 3 \right] = 108\]
Clearly, \[f''\left( 1 \right) > 0\] so x=1 is a point of local minima i.e., corresponding to point x=1, the given function f(x) has local minimum value. So, x=1 is a value in the set ${{\text{S}}_1}$.
Put x=-2 in equation (3), we get
\[ \Rightarrow f''\left( -2 \right) = 36\left[ {3{{\left( { - 2} \right)}^2} + 2\left( { - 2} \right) - 2} \right] = 36\left[ 6 \right] = 216\]
Clearly, \[f''\left( -2 \right) > 0\] so x=-2 is a point of local minima i.e., corresponding to point x=-2, the given function f(x) has local minimum value. So, x=-2 is a value in the set ${{\text{S}}_1}$.
So, set ${{\text{S}}_1} = \left\{ { - 2,1} \right\};{{\text{S}}_2} = \left\{ 0 \right\}$
Hence, option A is correct.
Note- In this particular problem, we have used second derivative test i.e., if \[f''\left( a \right) < 0\], then x=a is a point of local maxima and if \[f''\left( a \right) > 0\], then x=a is a point of local minima. Also, if \[f''\left( a \right) = 0\]occurs then x=a is a point of inflection. Here, the local maximum value of function f(x) is obtained by substituting x=0 in the function and the local minimum values of f(x) is obtained by substituting x=-2 and x=1 in the function.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it