If roots of the equation $2{x^{^2}} - 4x + 2\sin \theta - 1 = 0$ are of opposite sign$(where \theta \in (0,\pi )),$ then $\theta $ belongs to
(A)$(\dfrac{\pi }{6},\dfrac{{5\pi }}{6})$
(B)$(0,\dfrac{\pi }{6}) \cup (\dfrac{{5\pi }}{6},\pi )$
(C)$(0,\dfrac{{5\pi }}{6})$
(D)$(0,\pi )$
Answer
Verified
479.4k+ views
Hint: Determinant of this quadratic equation should be greater than 0,roots of opposite sign mean if one is positive then second should be negative, so the product of both is negative.
Complete step-by-step answer:
$2{x^2} - 4x + 2\sin \theta - 1 = 0$
We are solving this question by using general equation, that is $a{x^2} + bx + c = 0$ if we suppose it`s root is $\alpha ,\beta $ and it`s of opposite sign that`s mean $\alpha .\beta < 0$. In these type of question the value of $\alpha ,\beta $ low root get value of $\dfrac{c}{a} < 0$
comparing $2{x^2} - 4x + 2\sin \theta - 1 = 0$ with general $a{x^2} + bx + c = 0$
a = 2 b = -4 c = $2\sin \theta $
In this equation both roots are of opposite sing so we apply $\dfrac{c}{a} < 0$ (same equation) $\dfrac{{2\sin \theta - 1}}{2} < 0$
$2\sin \theta - 1 < 0$
$\operatorname{Sin} \theta < \dfrac{1}{2}$
$D > 0$ [ where D = ${b^2} - 4ac$ ]
Value of D will be ${4^2} - 2.(2\sin \theta - 1) > 0$
= $16 - 4.2.(2\sin \theta - 1) > 0$
= $16 - 8(2\sin \theta - 1) > 0$
Now open the brackets and multiply by 8
=\[16 - 16\sin \theta + 8 > 0\]
Add the numbers which are 16+8
=$24 - 16\sin \theta > 0$
compare the equation
= $24 > 16\sin \theta $
= $\operatorname{Sin} \theta < \dfrac{{24}}{{16}}$
This quantity is greater than 1. This is true for all values of $\theta $ because the value of $\sin \theta $ is less than 1.
$\operatorname{Sin} \theta $ should be less than $\dfrac{3}{2} = 1.5$
$\operatorname{Sin} \theta > 0.5$
$\theta $=$(0,\dfrac{\pi }{6}),(\dfrac{{5\pi }}{6},\pi )$
So, the correct answer is “Option B”.
Note: Root of opposite sign means if one is positive then second should be negative, so the product of both must be negative. We can solve this question by solving other options. For roots of a given quadratic to be the opposite sign, the product of roots is negative. Sign of roots of a quadratic equation.
*Both roots are positive (If a and b are opposite in sign and a and c are same in sign)
*Both roots are negative (If a,b,c are all of same sign)
*Roots are of opposite sign (If a and c are of opposite sign)
*roots equal but opposite in sing (If b=0)
Complete step-by-step answer:
$2{x^2} - 4x + 2\sin \theta - 1 = 0$
We are solving this question by using general equation, that is $a{x^2} + bx + c = 0$ if we suppose it`s root is $\alpha ,\beta $ and it`s of opposite sign that`s mean $\alpha .\beta < 0$. In these type of question the value of $\alpha ,\beta $ low root get value of $\dfrac{c}{a} < 0$
comparing $2{x^2} - 4x + 2\sin \theta - 1 = 0$ with general $a{x^2} + bx + c = 0$
a = 2 b = -4 c = $2\sin \theta $
In this equation both roots are of opposite sing so we apply $\dfrac{c}{a} < 0$ (same equation) $\dfrac{{2\sin \theta - 1}}{2} < 0$
$2\sin \theta - 1 < 0$
$\operatorname{Sin} \theta < \dfrac{1}{2}$
$D > 0$ [ where D = ${b^2} - 4ac$ ]
Value of D will be ${4^2} - 2.(2\sin \theta - 1) > 0$
= $16 - 4.2.(2\sin \theta - 1) > 0$
= $16 - 8(2\sin \theta - 1) > 0$
Now open the brackets and multiply by 8
=\[16 - 16\sin \theta + 8 > 0\]
Add the numbers which are 16+8
=$24 - 16\sin \theta > 0$
compare the equation
= $24 > 16\sin \theta $
= $\operatorname{Sin} \theta < \dfrac{{24}}{{16}}$
This quantity is greater than 1. This is true for all values of $\theta $ because the value of $\sin \theta $ is less than 1.
$\operatorname{Sin} \theta $ should be less than $\dfrac{3}{2} = 1.5$
$\operatorname{Sin} \theta > 0.5$
$\theta $=$(0,\dfrac{\pi }{6}),(\dfrac{{5\pi }}{6},\pi )$
So, the correct answer is “Option B”.
Note: Root of opposite sign means if one is positive then second should be negative, so the product of both must be negative. We can solve this question by solving other options. For roots of a given quadratic to be the opposite sign, the product of roots is negative. Sign of roots of a quadratic equation.
*Both roots are positive (If a and b are opposite in sign and a and c are same in sign)
*Both roots are negative (If a,b,c are all of same sign)
*Roots are of opposite sign (If a and c are of opposite sign)
*roots equal but opposite in sing (If b=0)
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE