Answer
Verified
494.1k+ views
Hint: Here, we will solve the given problem by considering each statements truth value and verify which compound statement is T i.e., Tautology.
Complete step-by-step answer:
i. $p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Now, we need to find the truth value of $p \vee q$ i.e.., “or” connectivity of statements of p and q
As, we know in the “or” connectivity if either of the statements p and q is $T$ then the compound statement $p \vee q$ will also be T
\[ p \vee q \\
T \vee F \\
T \\ \]
Hence, the truth value of $p \vee q$ is T i.e.., Tautology.
ii. $ \sim p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~p is F
Now, we need to find the truth value of $ \sim p \vee q$ i.e.., “or” connectivity of statements of negation (p) and q
\[ \Rightarrow \sim p \vee q \\
\Rightarrow F \vee F \\
\Rightarrow F \\ \]
Hence, the truth value of $ \sim p \vee q$ is F i.e.., Contradiction.
iii. $p \vee ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \vee ( \sim q)$ i.e.., “or” connectivity of statements of p and negation (q).
As, we know in the “or” connectivity if either of the statements is T then the compound statement will also be T
\[ \Rightarrow p \vee \sim q \\
\Rightarrow T \vee T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \vee ( \sim q)$ is T i.e.., Tautology.
iv. $p \wedge ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \wedge ( \sim q)$ i.e.., “and” connectivity of statements of p and negation (q).
As we know in the “and” connectivity if the truth value of each statement is T then only the compound statement’s truth value will be T.
\[\Rightarrow p \wedge \sim q \\
\Rightarrow T \wedge T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \wedge ( \sim q)$ is T i.e.., Tautology.
Therefore, (i), (iii), (iv) statements have the truth value T i.e.., Tautology.
Hence, the correct option for the given question is ‘B’.
Note: In solving the problems on truth values of statements if the connectivity is “or” then the truth value of the compound statement will be true if either of the two statements is true and if the connectivity is “and” then both of the statements should be true for the compound statement to be true.
Complete step-by-step answer:
i. $p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Now, we need to find the truth value of $p \vee q$ i.e.., “or” connectivity of statements of p and q
As, we know in the “or” connectivity if either of the statements p and q is $T$ then the compound statement $p \vee q$ will also be T
\[ p \vee q \\
T \vee F \\
T \\ \]
Hence, the truth value of $p \vee q$ is T i.e.., Tautology.
ii. $ \sim p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~p is F
Now, we need to find the truth value of $ \sim p \vee q$ i.e.., “or” connectivity of statements of negation (p) and q
\[ \Rightarrow \sim p \vee q \\
\Rightarrow F \vee F \\
\Rightarrow F \\ \]
Hence, the truth value of $ \sim p \vee q$ is F i.e.., Contradiction.
iii. $p \vee ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \vee ( \sim q)$ i.e.., “or” connectivity of statements of p and negation (q).
As, we know in the “or” connectivity if either of the statements is T then the compound statement will also be T
\[ \Rightarrow p \vee \sim q \\
\Rightarrow T \vee T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \vee ( \sim q)$ is T i.e.., Tautology.
iv. $p \wedge ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \wedge ( \sim q)$ i.e.., “and” connectivity of statements of p and negation (q).
As we know in the “and” connectivity if the truth value of each statement is T then only the compound statement’s truth value will be T.
\[\Rightarrow p \wedge \sim q \\
\Rightarrow T \wedge T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \wedge ( \sim q)$ is T i.e.., Tautology.
Therefore, (i), (iii), (iv) statements have the truth value T i.e.., Tautology.
Hence, the correct option for the given question is ‘B’.
Note: In solving the problems on truth values of statements if the connectivity is “or” then the truth value of the compound statement will be true if either of the two statements is true and if the connectivity is “and” then both of the statements should be true for the compound statement to be true.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it