
If p’s truth value is T and q’s truth value is F, then which of the following have the truth value T ?
i. $p \vee q$
ii. $ \sim p \vee q$
iii. $p \vee ( \sim q)$
iv. $p \wedge ( \sim q)$
A. (i),(ii),(iii)
B. (i),(iii),(iv)
C. (i),(ii),(iv)
D. (ii),(iii),(iv)
Answer
593.7k+ views
Hint: Here, we will solve the given problem by considering each statements truth value and verify which compound statement is T i.e., Tautology.
Complete step-by-step answer:
i. $p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Now, we need to find the truth value of $p \vee q$ i.e.., “or” connectivity of statements of p and q
As, we know in the “or” connectivity if either of the statements p and q is $T$ then the compound statement $p \vee q$ will also be T
\[ p \vee q \\
T \vee F \\
T \\ \]
Hence, the truth value of $p \vee q$ is T i.e.., Tautology.
ii. $ \sim p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~p is F
Now, we need to find the truth value of $ \sim p \vee q$ i.e.., “or” connectivity of statements of negation (p) and q
\[ \Rightarrow \sim p \vee q \\
\Rightarrow F \vee F \\
\Rightarrow F \\ \]
Hence, the truth value of $ \sim p \vee q$ is F i.e.., Contradiction.
iii. $p \vee ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \vee ( \sim q)$ i.e.., “or” connectivity of statements of p and negation (q).
As, we know in the “or” connectivity if either of the statements is T then the compound statement will also be T
\[ \Rightarrow p \vee \sim q \\
\Rightarrow T \vee T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \vee ( \sim q)$ is T i.e.., Tautology.
iv. $p \wedge ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \wedge ( \sim q)$ i.e.., “and” connectivity of statements of p and negation (q).
As we know in the “and” connectivity if the truth value of each statement is T then only the compound statement’s truth value will be T.
\[\Rightarrow p \wedge \sim q \\
\Rightarrow T \wedge T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \wedge ( \sim q)$ is T i.e.., Tautology.
Therefore, (i), (iii), (iv) statements have the truth value T i.e.., Tautology.
Hence, the correct option for the given question is ‘B’.
Note: In solving the problems on truth values of statements if the connectivity is “or” then the truth value of the compound statement will be true if either of the two statements is true and if the connectivity is “and” then both of the statements should be true for the compound statement to be true.
Complete step-by-step answer:
i. $p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Now, we need to find the truth value of $p \vee q$ i.e.., “or” connectivity of statements of p and q
As, we know in the “or” connectivity if either of the statements p and q is $T$ then the compound statement $p \vee q$ will also be T
\[ p \vee q \\
T \vee F \\
T \\ \]
Hence, the truth value of $p \vee q$ is T i.e.., Tautology.
ii. $ \sim p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~p is F
Now, we need to find the truth value of $ \sim p \vee q$ i.e.., “or” connectivity of statements of negation (p) and q
\[ \Rightarrow \sim p \vee q \\
\Rightarrow F \vee F \\
\Rightarrow F \\ \]
Hence, the truth value of $ \sim p \vee q$ is F i.e.., Contradiction.
iii. $p \vee ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \vee ( \sim q)$ i.e.., “or” connectivity of statements of p and negation (q).
As, we know in the “or” connectivity if either of the statements is T then the compound statement will also be T
\[ \Rightarrow p \vee \sim q \\
\Rightarrow T \vee T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \vee ( \sim q)$ is T i.e.., Tautology.
iv. $p \wedge ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \wedge ( \sim q)$ i.e.., “and” connectivity of statements of p and negation (q).
As we know in the “and” connectivity if the truth value of each statement is T then only the compound statement’s truth value will be T.
\[\Rightarrow p \wedge \sim q \\
\Rightarrow T \wedge T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \wedge ( \sim q)$ is T i.e.., Tautology.
Therefore, (i), (iii), (iv) statements have the truth value T i.e.., Tautology.
Hence, the correct option for the given question is ‘B’.
Note: In solving the problems on truth values of statements if the connectivity is “or” then the truth value of the compound statement will be true if either of the two statements is true and if the connectivity is “and” then both of the statements should be true for the compound statement to be true.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

