
If p’s truth value is T and q’s truth value is F, then which of the following have the truth value T ?
i. $p \vee q$
ii. $ \sim p \vee q$
iii. $p \vee ( \sim q)$
iv. $p \wedge ( \sim q)$
A. (i),(ii),(iii)
B. (i),(iii),(iv)
C. (i),(ii),(iv)
D. (ii),(iii),(iv)
Answer
604.8k+ views
Hint: Here, we will solve the given problem by considering each statements truth value and verify which compound statement is T i.e., Tautology.
Complete step-by-step answer:
i. $p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Now, we need to find the truth value of $p \vee q$ i.e.., “or” connectivity of statements of p and q
As, we know in the “or” connectivity if either of the statements p and q is $T$ then the compound statement $p \vee q$ will also be T
\[ p \vee q \\
T \vee F \\
T \\ \]
Hence, the truth value of $p \vee q$ is T i.e.., Tautology.
ii. $ \sim p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~p is F
Now, we need to find the truth value of $ \sim p \vee q$ i.e.., “or” connectivity of statements of negation (p) and q
\[ \Rightarrow \sim p \vee q \\
\Rightarrow F \vee F \\
\Rightarrow F \\ \]
Hence, the truth value of $ \sim p \vee q$ is F i.e.., Contradiction.
iii. $p \vee ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \vee ( \sim q)$ i.e.., “or” connectivity of statements of p and negation (q).
As, we know in the “or” connectivity if either of the statements is T then the compound statement will also be T
\[ \Rightarrow p \vee \sim q \\
\Rightarrow T \vee T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \vee ( \sim q)$ is T i.e.., Tautology.
iv. $p \wedge ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \wedge ( \sim q)$ i.e.., “and” connectivity of statements of p and negation (q).
As we know in the “and” connectivity if the truth value of each statement is T then only the compound statement’s truth value will be T.
\[\Rightarrow p \wedge \sim q \\
\Rightarrow T \wedge T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \wedge ( \sim q)$ is T i.e.., Tautology.
Therefore, (i), (iii), (iv) statements have the truth value T i.e.., Tautology.
Hence, the correct option for the given question is ‘B’.
Note: In solving the problems on truth values of statements if the connectivity is “or” then the truth value of the compound statement will be true if either of the two statements is true and if the connectivity is “and” then both of the statements should be true for the compound statement to be true.
Complete step-by-step answer:
i. $p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Now, we need to find the truth value of $p \vee q$ i.e.., “or” connectivity of statements of p and q
As, we know in the “or” connectivity if either of the statements p and q is $T$ then the compound statement $p \vee q$ will also be T
\[ p \vee q \\
T \vee F \\
T \\ \]
Hence, the truth value of $p \vee q$ is T i.e.., Tautology.
ii. $ \sim p \vee q$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~p is F
Now, we need to find the truth value of $ \sim p \vee q$ i.e.., “or” connectivity of statements of negation (p) and q
\[ \Rightarrow \sim p \vee q \\
\Rightarrow F \vee F \\
\Rightarrow F \\ \]
Hence, the truth value of $ \sim p \vee q$ is F i.e.., Contradiction.
iii. $p \vee ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \vee ( \sim q)$ i.e.., “or” connectivity of statements of p and negation (q).
As, we know in the “or” connectivity if either of the statements is T then the compound statement will also be T
\[ \Rightarrow p \vee \sim q \\
\Rightarrow T \vee T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \vee ( \sim q)$ is T i.e.., Tautology.
iv. $p \wedge ( \sim q)$
Given,
The truth value of p is T and the truth value of q is F.
Therefore the truth value of ~q is T.
Now, we need to find the truth value of $p \wedge ( \sim q)$ i.e.., “and” connectivity of statements of p and negation (q).
As we know in the “and” connectivity if the truth value of each statement is T then only the compound statement’s truth value will be T.
\[\Rightarrow p \wedge \sim q \\
\Rightarrow T \wedge T \\
\Rightarrow T \\ \]
Hence, the truth value of $p \wedge ( \sim q)$ is T i.e.., Tautology.
Therefore, (i), (iii), (iv) statements have the truth value T i.e.., Tautology.
Hence, the correct option for the given question is ‘B’.
Note: In solving the problems on truth values of statements if the connectivity is “or” then the truth value of the compound statement will be true if either of the two statements is true and if the connectivity is “and” then both of the statements should be true for the compound statement to be true.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

