
If \[p\left( x \right) = x + 9\], then find the value of \[p\left( x \right) + p\left( { - x} \right)\]?
Answer
551.1k+ views
Hint:
Here in this question we will first find the value of \[p\left( { - x} \right)\] by replacing the value of \[x\] by \[ - x\] in the given function. Then we will add the given function and the obtained function to get the required value of \[p\left( x \right) + p\left( { - x} \right)\].
Complete step by step solution:
Given function is \[p\left( x \right) = x + 9\]…………………. \[\left( 1 \right)\]
Now we will find the value of \[p\left( { - x} \right)\] by substituting the value of \[x\] as \[ - x\] in the given function to get the value of \[p\left( { - x} \right)\]. Therefore, we get
\[ \Rightarrow p\left( { - x} \right) = - x + 9\]…………………. \[\left( 2 \right)\]
Now we will add the equation \[\left( 1 \right)\] and equation \[\left( 2 \right)\] to get the value of \[p\left( x \right) + p\left( { - x} \right)\]. Therefore, we get
\[p\left( x \right) + p\left( { - x} \right) = \left( {x + 9} \right) + \left( { - x + 9} \right)\]
Opening the bracket, we get
\[ \Rightarrow p\left( x \right) + p\left( { - x} \right) = x + 9 - x + 9\]
Adding and subtracting the like terms, we get
\[ \Rightarrow p\left( x \right) + p\left( { - x} \right) = 18\]
Hence the value of \[p\left( x \right) + p\left( { - x} \right)\] is equal to 18.
Additional Information:
Here, the equation given in the question is the linear equation as in this the highest exponent of the variable \[x\] is one. A linear equation has only one solution. For any equation, numbers of roots are always equal to the value of the highest exponent of the variable. Other than linear equations, there are many types of equations such as quadratic equation, cubic equation. Quadratic equation is an equation which has a highest degree of 2. Cubic equation is an equation which has a highest degree of variable as 3.
Note:
Here we might make a mistake by changing the sign of 9 in the equation while finding \[p\left( { - x} \right)\]. Here we just have to replace \[x\] by \[ - x\] and not change the value of the variable and constant. We can also make a mistake that instead of adding \[p\left( { - x} \right)\] and \[p\left( x \right)\] we might subtract them and get the answer as \[2x\], which is incorrect.
Here in this question we will first find the value of \[p\left( { - x} \right)\] by replacing the value of \[x\] by \[ - x\] in the given function. Then we will add the given function and the obtained function to get the required value of \[p\left( x \right) + p\left( { - x} \right)\].
Complete step by step solution:
Given function is \[p\left( x \right) = x + 9\]…………………. \[\left( 1 \right)\]
Now we will find the value of \[p\left( { - x} \right)\] by substituting the value of \[x\] as \[ - x\] in the given function to get the value of \[p\left( { - x} \right)\]. Therefore, we get
\[ \Rightarrow p\left( { - x} \right) = - x + 9\]…………………. \[\left( 2 \right)\]
Now we will add the equation \[\left( 1 \right)\] and equation \[\left( 2 \right)\] to get the value of \[p\left( x \right) + p\left( { - x} \right)\]. Therefore, we get
\[p\left( x \right) + p\left( { - x} \right) = \left( {x + 9} \right) + \left( { - x + 9} \right)\]
Opening the bracket, we get
\[ \Rightarrow p\left( x \right) + p\left( { - x} \right) = x + 9 - x + 9\]
Adding and subtracting the like terms, we get
\[ \Rightarrow p\left( x \right) + p\left( { - x} \right) = 18\]
Hence the value of \[p\left( x \right) + p\left( { - x} \right)\] is equal to 18.
Additional Information:
Here, the equation given in the question is the linear equation as in this the highest exponent of the variable \[x\] is one. A linear equation has only one solution. For any equation, numbers of roots are always equal to the value of the highest exponent of the variable. Other than linear equations, there are many types of equations such as quadratic equation, cubic equation. Quadratic equation is an equation which has a highest degree of 2. Cubic equation is an equation which has a highest degree of variable as 3.
Note:
Here we might make a mistake by changing the sign of 9 in the equation while finding \[p\left( { - x} \right)\]. Here we just have to replace \[x\] by \[ - x\] and not change the value of the variable and constant. We can also make a mistake that instead of adding \[p\left( { - x} \right)\] and \[p\left( x \right)\] we might subtract them and get the answer as \[2x\], which is incorrect.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

