
If $\pi < \theta < \dfrac{{3\pi }}{2}$ the expression $\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$ is equal to
- (A) $2$ (B) $2 + 4\sin \theta $ (C) $2 - 4\sin \theta $ (D) $0$
- (A) $2$ (B) $2 + 4\sin \theta $ (C) $2 - 4\sin \theta $ (D) $0$
Answer
497.4k+ views
Hint- Here in this question we will use some basic trigonometric identities as
$\sin 2\alpha = 2\sin \alpha \cos \alpha $
${\sin ^2}\alpha + {\cos ^2}\alpha = 1$
$1 + 2{\cos ^2}\alpha = \cos 2\alpha $
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
Complete step by step solution-
We have to simplify the expression$\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$; to do this we will use some basic identities here.
$\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
$ = \sqrt {4{{\sin }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$ [ ]
On opening the bracket,
$ = \sqrt {4{{\sin }^4}\theta + \left( {4 \times {{\sin }^2}\theta \times {{\cos }^2}\theta } \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
On taking the common term from the terms under the square root,
\[ = \sqrt {4{{\sin }^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)\]
\[ = \sqrt {4{{\sin }^2}\theta \times \left( 1 \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)\] [ ]
On splitting the $4$ in to factors,
\[ = \sqrt {4{{\sin }^2}\theta } + 2 \times \left( {2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)} \right)\]
\[ = \sqrt {4{{\sin }^2}\theta } + 2 \times \left( {\cos \left( {2 \times \left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)} \right) + 1} \right)\] [ ]
\[ = 2\sin \theta + 2 \times \left( {\cos \left( {\dfrac{\pi }{2} - \theta } \right) + 1} \right)\]
\[ = 2\sin \theta + 2 \times \left( {\sin \theta + 1} \right)\] []\[ = 2\sin \theta + 2\sin \theta + 2\]
\[ = 4\sin \theta + 2\]
Hence, $\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) = 4\sin \theta + 2$
Therefore,Option B is the correct answer
Note: To solve this type of question we just need to learn all the identities such that we can find the particular form in the given expression so that an identity can be applied.Also, care has to be taken to apply the appropriate identity in accordance to the problem given
$\sin 2\alpha = 2\sin \alpha \cos \alpha $
${\sin ^2}\alpha + {\cos ^2}\alpha = 1$
$1 + 2{\cos ^2}\alpha = \cos 2\alpha $
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
Complete step by step solution-
We have to simplify the expression$\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$; to do this we will use some basic identities here.
$\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
$ = \sqrt {4{{\sin }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$ [ ]
On opening the bracket,
$ = \sqrt {4{{\sin }^4}\theta + \left( {4 \times {{\sin }^2}\theta \times {{\cos }^2}\theta } \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)$
On taking the common term from the terms under the square root,
\[ = \sqrt {4{{\sin }^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)\]
\[ = \sqrt {4{{\sin }^2}\theta \times \left( 1 \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)\] [ ]
On splitting the $4$ in to factors,
\[ = \sqrt {4{{\sin }^2}\theta } + 2 \times \left( {2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)} \right)\]
\[ = \sqrt {4{{\sin }^2}\theta } + 2 \times \left( {\cos \left( {2 \times \left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)} \right) + 1} \right)\] [ ]
\[ = 2\sin \theta + 2 \times \left( {\cos \left( {\dfrac{\pi }{2} - \theta } \right) + 1} \right)\]
\[ = 2\sin \theta + 2 \times \left( {\sin \theta + 1} \right)\] []\[ = 2\sin \theta + 2\sin \theta + 2\]
\[ = 4\sin \theta + 2\]
Hence, $\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) = 4\sin \theta + 2$
Therefore,Option B is the correct answer
Note: To solve this type of question we just need to learn all the identities such that we can find the particular form in the given expression so that an identity can be applied.Also, care has to be taken to apply the appropriate identity in accordance to the problem given
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

State the laws of reflection of light
