
If $P(A) = \frac{6}{{11}},P(B) = \frac{5}{{11}}$and$P(A \cup B) = \frac{7}{{11}}$, find
i.$P(A \cap B)$
ii.$P(A/B)$
iii.$P(B/A)$
A.$0.58,0.58,0.63$
B.$0.42,0.67,0.57$
C.$0.36,0.80,0.66$
D.$0.80,0.98,0.87$
Answer
622.5k+ views
Hint: Here, to solve the given problem we use the Addition theorem of probability
as well as the conditional probability Concepts.
Given, the Probability of the event A i.e.., $P(A) = \frac{6}{{11}}$ it is also given that the
probability of the event B i.e.., $P(B) = \frac{5}{{11}}$ and the probability of the occurrence
of events A or B i.e.., $P(A \cup B) = \frac{7}{{11}}$
i. To find $P(A \cap B)$ i.e.., the probability of the events $A$ and $B$
As we know the Addition theorem on probability i.e..,
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ \to (1)$
Now, let us put the given values of $P(A)$, $P(B)$and $P(A \cup B)$ in the equation 1, we get
$
\frac{7}{{11}} = \frac{6}{{11}} + \frac{5}{{11}} - P(A \cap B) \\
\Rightarrow P(A \cap B) = \frac{6}{{11}} + \frac{5}{{11}} - \frac{7}{{11}} \\
\Rightarrow P(A \cap B) = \frac{{6 + 5 - 7}}{{11}} \\
P(A \cap B) = \frac{4}{{11}} = 0.36 \\
$
Hence, the probability of the occurrence of both the events A and B is $0.36$
ii.To find $P(A/B)$i.e.., the probability of the event A after the occurrence of event B
So, to find the $P(A/B)$ let us consider the concept of conditional probability i.e..,
$P(A/B) = \frac{{P(A \cap B)}}{{P(B)}} \to (2)$
Since we have the values of $P(A \cap B)$ and $P(B)$, let us substitute in equation 2, we get
$ \Rightarrow P(A/B) = \frac{{\frac{4}{{11}}}}{{\frac{5}{{11}}}} = \frac{4}{5} = 0.80$
Hence, the required value of $P(A/B)$is 0.80
iii.To find $P(B/A)$ i.e.., the probability of the event B after the occurrence of event A
So, to find the $P(B/A)$ let us consider the concept of conditional probability i.e..,
$P(B/A) = \frac{{P(A \cap B)}}{{P(A)}} \to (3)$
Since we have the values of $P(A \cap B)$ and$P(A)$, let us substitute in equation 3, we get
$P(B/A) = \frac{{\frac{4}{{11}}}}{{\frac{6}{{11}}}} = \frac{4}{6} = \frac{2}{3} = 0.66$
Hence, the required value of $P(B/A)$is 0.66
Hence the correct option for the given question is ‘C’
Note: Here, in this question $P(A/B)$and $P(B/A)$ both are considered as the conditional probability where $P(A/B)$is the “probability of the event A after the occurrence of event B”
and $P(B/A)$ is the “probability of the event B after the occurrence of event A”
as well as the conditional probability Concepts.
Given, the Probability of the event A i.e.., $P(A) = \frac{6}{{11}}$ it is also given that the
probability of the event B i.e.., $P(B) = \frac{5}{{11}}$ and the probability of the occurrence
of events A or B i.e.., $P(A \cup B) = \frac{7}{{11}}$
i. To find $P(A \cap B)$ i.e.., the probability of the events $A$ and $B$
As we know the Addition theorem on probability i.e..,
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ \to (1)$
Now, let us put the given values of $P(A)$, $P(B)$and $P(A \cup B)$ in the equation 1, we get
$
\frac{7}{{11}} = \frac{6}{{11}} + \frac{5}{{11}} - P(A \cap B) \\
\Rightarrow P(A \cap B) = \frac{6}{{11}} + \frac{5}{{11}} - \frac{7}{{11}} \\
\Rightarrow P(A \cap B) = \frac{{6 + 5 - 7}}{{11}} \\
P(A \cap B) = \frac{4}{{11}} = 0.36 \\
$
Hence, the probability of the occurrence of both the events A and B is $0.36$
ii.To find $P(A/B)$i.e.., the probability of the event A after the occurrence of event B
So, to find the $P(A/B)$ let us consider the concept of conditional probability i.e..,
$P(A/B) = \frac{{P(A \cap B)}}{{P(B)}} \to (2)$
Since we have the values of $P(A \cap B)$ and $P(B)$, let us substitute in equation 2, we get
$ \Rightarrow P(A/B) = \frac{{\frac{4}{{11}}}}{{\frac{5}{{11}}}} = \frac{4}{5} = 0.80$
Hence, the required value of $P(A/B)$is 0.80
iii.To find $P(B/A)$ i.e.., the probability of the event B after the occurrence of event A
So, to find the $P(B/A)$ let us consider the concept of conditional probability i.e..,
$P(B/A) = \frac{{P(A \cap B)}}{{P(A)}} \to (3)$
Since we have the values of $P(A \cap B)$ and$P(A)$, let us substitute in equation 3, we get
$P(B/A) = \frac{{\frac{4}{{11}}}}{{\frac{6}{{11}}}} = \frac{4}{6} = \frac{2}{3} = 0.66$
Hence, the required value of $P(B/A)$is 0.66
Hence the correct option for the given question is ‘C’
Note: Here, in this question $P(A/B)$and $P(B/A)$ both are considered as the conditional probability where $P(A/B)$is the “probability of the event A after the occurrence of event B”
and $P(B/A)$ is the “probability of the event B after the occurrence of event A”
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

