
If P = {factors of 36} and Q = {factors of 48}, find \[P\bigcup Q=K\], and if sum of each element in K is s, then \[\dfrac{s+3}{10}-10=\]
Answer
611.7k+ views
Hint: We will use the concept of factors and union of two sets to solve this question. Factors are numbers which we multiply together to get the desired number. Also the union of a collection of sets is the set of all elements in the collection.
Complete step-by-step answer:
We know that factors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36.
And factors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
So, P is equal to { 1, 2, 3, 4, 6, 9, 12, 18, 36 } and Q is equal to { 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 }.
We also know that the union of two sets has all the elements of both the sets P and Q. So using this information we get,
\[P\bigcup Q=\{1,2,3,4,6,8,9,12,16,18,24,36,48\}........(1)\]
Now it is mentioned in the question that the sum of each element in K is s. So from equation (1) finding s we get,
\[\begin{align}
& \Rightarrow s=1+2+3+4+6+8+9+12+16+18+24+36+48 \\
& \Rightarrow s=187.....(2) \\
\end{align}\]
Now we have to find the value of \[\dfrac{s+3}{10}-10\]. So substituting the value of s from equation (2) in this expression we get,
\[\Rightarrow \dfrac{s+3}{10}-10=\dfrac{187+3}{10}-10=\dfrac{190}{10}-10=19-10=9\]
Hence the value of \[\dfrac{s+3}{10}-10\] is 9.
Note: Remembering the concept of factors and union of sets is the key here. We in a hurry can make a mistake in writing the union of P and Q in equation (1) by missing some elements and hence we need to be careful while solving this step.
Complete step-by-step answer:
We know that factors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36.
And factors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
So, P is equal to { 1, 2, 3, 4, 6, 9, 12, 18, 36 } and Q is equal to { 1, 2, 3, 4, 6, 8, 12, 16, 24, 48 }.
We also know that the union of two sets has all the elements of both the sets P and Q. So using this information we get,
\[P\bigcup Q=\{1,2,3,4,6,8,9,12,16,18,24,36,48\}........(1)\]
Now it is mentioned in the question that the sum of each element in K is s. So from equation (1) finding s we get,
\[\begin{align}
& \Rightarrow s=1+2+3+4+6+8+9+12+16+18+24+36+48 \\
& \Rightarrow s=187.....(2) \\
\end{align}\]
Now we have to find the value of \[\dfrac{s+3}{10}-10\]. So substituting the value of s from equation (2) in this expression we get,
\[\Rightarrow \dfrac{s+3}{10}-10=\dfrac{187+3}{10}-10=\dfrac{190}{10}-10=19-10=9\]
Hence the value of \[\dfrac{s+3}{10}-10\] is 9.
Note: Remembering the concept of factors and union of sets is the key here. We in a hurry can make a mistake in writing the union of P and Q in equation (1) by missing some elements and hence we need to be careful while solving this step.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

