
If $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular vectors such that $\left| \overrightarrow{a}+\overrightarrow{b} \right|=13$ and $\left| \overrightarrow{a} \right|=5$, find the value of $\left| \overrightarrow{b} \right|$.
Answer
577.8k+ views
Hint: To solve this question, what we will do is, we first find out the value of $\overrightarrow{a}\cdot \overrightarrow{b}$, when $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular vectors, then we will square the $\left| \overrightarrow{a}+\overrightarrow{b} \right|=13$ on both the sides and then we will substitute the values of $\overrightarrow{a}\cdot \overrightarrow{b}$ and $\left| \overrightarrow{a} \right|=5$ to obtain the value of $\left| \overrightarrow{b} \right|$.
Complete step by step answer:
Now if it is given that two vectors, say $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular vectors then always remember that $\overrightarrow{a}\cdot \overrightarrow{b}=0$.
Now, in question it is given that, $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular vectors such that $\left| \overrightarrow{a}+\overrightarrow{b} \right|=13$ and $\left| \overrightarrow{a} \right|=5$
Now, let us solve, $\left| \overrightarrow{a}+\overrightarrow{b} \right|=13$ first.
$\left| \overrightarrow{a}+\overrightarrow{b} \right|=13$
Squaring both sides, we get
${{\left| \overrightarrow{a}+\overrightarrow{b} \right|}^{2}}={{13}^{2}}$
$\left( \overrightarrow{a}+\overrightarrow{b} \right)\cdot \left( \overrightarrow{a}+\overrightarrow{b} \right)={{13}^{2}}$
On, solving brackets, we get
${{\left| \overrightarrow{a} \right|}^{2}}+2\cdot \overrightarrow{a\cdot }\overrightarrow{b}+{{\left| \overrightarrow{b} \right|}^{2}}={{13}^{2}}$.
Now, as in question it is given that $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular vectors and we discussed above that, $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular vectors then, $\overrightarrow{a}\cdot \overrightarrow{b}=0$.
Also, here $\overrightarrow{a}\cdot \overrightarrow{b}=ab\cos \theta $ which is called as dot product of vector $\overrightarrow{a}$ and $\overrightarrow{b}$.
So, putting $\overrightarrow{a}\cdot \overrightarrow{b}=0$in ${{\left| \overrightarrow{a} \right|}^{2}}+2\cdot \overrightarrow{a\cdot }\overrightarrow{b}+{{\left| \overrightarrow{b} \right|}^{2}}={{13}^{2}}$, we get
${{\left| \overrightarrow{a} \right|}^{2}}+2\cdot (0)+{{\left| \overrightarrow{b} \right|}^{2}}={{13}^{2}}$,
On solving, we get
${{\left| \overrightarrow{a} \right|}^{2}}+{{\left| \overrightarrow{b} \right|}^{2}}=169$ .
Also, in question it is given that $\left| \overrightarrow{a} \right|=5$,
So, squaring both side, we get
${{\left| \overrightarrow{a} \right|}^{2}}={{5}^{2}}$ .
${{\left| \overrightarrow{a} \right|}^{2}}=25$ .
Putting, ${{\left| \overrightarrow{a} \right|}^{2}}=25$in ${{\left| \overrightarrow{a} \right|}^{2}}+{{\left| \overrightarrow{b} \right|}^{2}}=169$, we get
$25+{{\left| \overrightarrow{b} \right|}^{2}}=169$ .
Taking, 25 from left hand side to right hand side, we get
${{\left| \overrightarrow{b} \right|}^{2}}=169-25$ .
On simplifying, we get
${{\left| \overrightarrow{b} \right|}^{2}}=144$ .
Taking square root on both side, we get
$\left| \overrightarrow{b} \right|=\sqrt{144}$ .
$\left| \overrightarrow{b} \right|=12$ .
Hence, value of $\left| \overrightarrow{b} \right|$is equals to $\left| \overrightarrow{b} \right|=\sqrt{144}$.
Note: vectors are an important portion of mathematics, so one must know basics, theory and all concepts of vectors. While solving questions related to vectors, calculation error must be avoided and always represent a vector by an arrow on its head. Vector is something which has magnitude and direction both.
Complete step by step answer:
Now if it is given that two vectors, say $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular vectors then always remember that $\overrightarrow{a}\cdot \overrightarrow{b}=0$.
Now, in question it is given that, $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular vectors such that $\left| \overrightarrow{a}+\overrightarrow{b} \right|=13$ and $\left| \overrightarrow{a} \right|=5$
Now, let us solve, $\left| \overrightarrow{a}+\overrightarrow{b} \right|=13$ first.
$\left| \overrightarrow{a}+\overrightarrow{b} \right|=13$
Squaring both sides, we get
${{\left| \overrightarrow{a}+\overrightarrow{b} \right|}^{2}}={{13}^{2}}$
$\left( \overrightarrow{a}+\overrightarrow{b} \right)\cdot \left( \overrightarrow{a}+\overrightarrow{b} \right)={{13}^{2}}$
On, solving brackets, we get
${{\left| \overrightarrow{a} \right|}^{2}}+2\cdot \overrightarrow{a\cdot }\overrightarrow{b}+{{\left| \overrightarrow{b} \right|}^{2}}={{13}^{2}}$.
Now, as in question it is given that $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular vectors and we discussed above that, $\overrightarrow{a}$ and $\overrightarrow{b}$ are perpendicular vectors then, $\overrightarrow{a}\cdot \overrightarrow{b}=0$.
Also, here $\overrightarrow{a}\cdot \overrightarrow{b}=ab\cos \theta $ which is called as dot product of vector $\overrightarrow{a}$ and $\overrightarrow{b}$.
So, putting $\overrightarrow{a}\cdot \overrightarrow{b}=0$in ${{\left| \overrightarrow{a} \right|}^{2}}+2\cdot \overrightarrow{a\cdot }\overrightarrow{b}+{{\left| \overrightarrow{b} \right|}^{2}}={{13}^{2}}$, we get
${{\left| \overrightarrow{a} \right|}^{2}}+2\cdot (0)+{{\left| \overrightarrow{b} \right|}^{2}}={{13}^{2}}$,
On solving, we get
${{\left| \overrightarrow{a} \right|}^{2}}+{{\left| \overrightarrow{b} \right|}^{2}}=169$ .
Also, in question it is given that $\left| \overrightarrow{a} \right|=5$,
So, squaring both side, we get
${{\left| \overrightarrow{a} \right|}^{2}}={{5}^{2}}$ .
${{\left| \overrightarrow{a} \right|}^{2}}=25$ .
Putting, ${{\left| \overrightarrow{a} \right|}^{2}}=25$in ${{\left| \overrightarrow{a} \right|}^{2}}+{{\left| \overrightarrow{b} \right|}^{2}}=169$, we get
$25+{{\left| \overrightarrow{b} \right|}^{2}}=169$ .
Taking, 25 from left hand side to right hand side, we get
${{\left| \overrightarrow{b} \right|}^{2}}=169-25$ .
On simplifying, we get
${{\left| \overrightarrow{b} \right|}^{2}}=144$ .
Taking square root on both side, we get
$\left| \overrightarrow{b} \right|=\sqrt{144}$ .
$\left| \overrightarrow{b} \right|=12$ .
Hence, value of $\left| \overrightarrow{b} \right|$is equals to $\left| \overrightarrow{b} \right|=\sqrt{144}$.
Note: vectors are an important portion of mathematics, so one must know basics, theory and all concepts of vectors. While solving questions related to vectors, calculation error must be avoided and always represent a vector by an arrow on its head. Vector is something which has magnitude and direction both.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

