Answer
Verified
408.6k+ views
Hint: We are given three vectors and let $\overrightarrow r = 2\overrightarrow a - \overrightarrow b - 3\overrightarrow c $and substituting the given vectors we get the new vector r and in order to find the unit vector we use the formula $\widehat r = \dfrac{{\overrightarrow r }}{{\left| {\overrightarrow r } \right|}}$and the magnitude formula is given as $\sqrt {{{\left( {{\text{coefficient of i}}} \right)}^2} + {{\left( {{\text{coefficient of j}}} \right)}^2} + {{\left( {{\text{coefficient of k}}} \right)}^2}} $and after obtaining the unit vector the required vector is obtained by multiplying 6 with the unit vector.
Complete step by step solution:
Let $\overrightarrow r = 2\overrightarrow a - \overrightarrow b - 3\overrightarrow c $
We are given that $\overrightarrow a = \widehat i + \widehat j + \widehat k,\overrightarrow b = \widehat {4i} - \widehat {2j} + \widehat {3k},\overrightarrow c = \widehat i - \widehat {2j} + \widehat k$
Substituting this in we get
$
\Rightarrow \overrightarrow r = 2\left( {\widehat i + \widehat j + \widehat k} \right) - \left( {\widehat {4i} - \widehat {2j} + \widehat {3k}} \right) - 3\left( {\widehat i - \widehat {2j} + \widehat k} \right) \\
\Rightarrow \overrightarrow r = 2\widehat i + \widehat {2j} + 2\widehat k - \widehat {4i} + \widehat {2j} - \widehat {3k} - 3\widehat i + 6\widehat j - 3\widehat k \\
\Rightarrow \overrightarrow r = - 5\widehat i + 10\widehat j - \widehat {4k} \\
$
Now the unit vector is given by the formula
$ \Rightarrow \widehat r = \dfrac{{\overrightarrow r }}{{\left| {\overrightarrow r } \right|}}$ ……….(1)
Where $\overrightarrow r $is the given vector and $\left| {\overrightarrow r } \right|$is the magnitude of $\overrightarrow r $
The magnitude of a vector is given by $\sqrt {{{\left( {{\text{coefficient of i}}} \right)}^2} + {{\left( {{\text{coefficient of j}}} \right)}^2} + {{\left( {{\text{coefficient of k}}} \right)}^2}} $
Therefore the modulus of is given as
\[
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( {10} \right)}^2} + {{\left( { - 4} \right)}^2}} \\
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {25 + 100 + 16} = \sqrt {141} \\
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {141} \\
\]
Using this in (1) we get
$ \Rightarrow \widehat r = \dfrac{{ - 5\widehat i + 10\widehat j - \widehat {4k}}}{{\sqrt {141} }}$
Since we are given the magnitude of the required vector is 6
The vector parallel to r with magnitude 6 is given by $6\times \widehat r$
$
\Rightarrow 6\times \dfrac{{ - 5\widehat i + 10\widehat j - \widehat {4k}}}{{\sqrt {141} }} \\
\Rightarrow \dfrac{{ - 30\widehat i + 60\widehat j - 24\widehat k}}{{\sqrt {141} }} \\
$
Therefore the required vector is $\dfrac{{ - 30\widehat i + 60\widehat j - 24\widehat k}}{{\sqrt {141} }}$.
Note :
Vectors are parallel if they have the same direction. Both components of one vector must be in the same ratio to the corresponding components of the parallel vector.
A unit vector is a vector of length 1, sometimes also called a direction vector.
Complete step by step solution:
Let $\overrightarrow r = 2\overrightarrow a - \overrightarrow b - 3\overrightarrow c $
We are given that $\overrightarrow a = \widehat i + \widehat j + \widehat k,\overrightarrow b = \widehat {4i} - \widehat {2j} + \widehat {3k},\overrightarrow c = \widehat i - \widehat {2j} + \widehat k$
Substituting this in we get
$
\Rightarrow \overrightarrow r = 2\left( {\widehat i + \widehat j + \widehat k} \right) - \left( {\widehat {4i} - \widehat {2j} + \widehat {3k}} \right) - 3\left( {\widehat i - \widehat {2j} + \widehat k} \right) \\
\Rightarrow \overrightarrow r = 2\widehat i + \widehat {2j} + 2\widehat k - \widehat {4i} + \widehat {2j} - \widehat {3k} - 3\widehat i + 6\widehat j - 3\widehat k \\
\Rightarrow \overrightarrow r = - 5\widehat i + 10\widehat j - \widehat {4k} \\
$
Now the unit vector is given by the formula
$ \Rightarrow \widehat r = \dfrac{{\overrightarrow r }}{{\left| {\overrightarrow r } \right|}}$ ……….(1)
Where $\overrightarrow r $is the given vector and $\left| {\overrightarrow r } \right|$is the magnitude of $\overrightarrow r $
The magnitude of a vector is given by $\sqrt {{{\left( {{\text{coefficient of i}}} \right)}^2} + {{\left( {{\text{coefficient of j}}} \right)}^2} + {{\left( {{\text{coefficient of k}}} \right)}^2}} $
Therefore the modulus of is given as
\[
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {{{\left( { - 5} \right)}^2} + {{\left( {10} \right)}^2} + {{\left( { - 4} \right)}^2}} \\
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {25 + 100 + 16} = \sqrt {141} \\
\Rightarrow \left| {\overrightarrow r } \right| = \sqrt {141} \\
\]
Using this in (1) we get
$ \Rightarrow \widehat r = \dfrac{{ - 5\widehat i + 10\widehat j - \widehat {4k}}}{{\sqrt {141} }}$
Since we are given the magnitude of the required vector is 6
The vector parallel to r with magnitude 6 is given by $6\times \widehat r$
$
\Rightarrow 6\times \dfrac{{ - 5\widehat i + 10\widehat j - \widehat {4k}}}{{\sqrt {141} }} \\
\Rightarrow \dfrac{{ - 30\widehat i + 60\widehat j - 24\widehat k}}{{\sqrt {141} }} \\
$
Therefore the required vector is $\dfrac{{ - 30\widehat i + 60\widehat j - 24\widehat k}}{{\sqrt {141} }}$.
Note :
Vectors are parallel if they have the same direction. Both components of one vector must be in the same ratio to the corresponding components of the parallel vector.
A unit vector is a vector of length 1, sometimes also called a direction vector.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE