Answer
Verified
445.2k+ views
Hint: First we’ll find the number of subsets of A containing three elements and the number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$. Then will form an equation according to the data given in the question, we’ll obtain an equation in ‘n’ which will get us the value of ‘n’.
Complete step by step answer:
Given data: one-quarter of all three-element subsets of the set ${\text{A = }}{{\text{a}}_{\text{1}}}{\text{,}}{{\text{a}}_{\text{2}}}{\text{,}}{{\text{a}}_{\text{3}}}....{{\text{a}}_{\text{n}}}$ contains the element ${{\text{a}}_{\text{3}}}$
Number of subsets of A containing three elements is ${}^{\text{n}}{{\text{C}}_{\text{3}}}$
The number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$is${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Now, according to the given statement, we can say that
$\dfrac{{\text{1}}}{{\text{4}}}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ = }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ , we’ll get
$\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}$
Now, using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[
\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{4}}}\dfrac{{\text{n}}}{{{\text{3!}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{2!}}}} \\
\]
Now, solving for n, we’ll obtain
\[
{\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3!}} \\
\Rightarrow {\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3(2!)}} \\
\Rightarrow {\text{n = 4(3)}} \\
\Rightarrow {\text{n = 12}} \\
\]
Therefore, the value of n is 12
Note: We can also find the number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$that will be equal to the difference between the number of subsets of A containing three elements and the number of three-element subsets of A do not contain ${{\text{a}}_{\text{3}}}$ i.e.
${\text{ = }}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ - }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{3}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ ,
\[{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Dividing and multiplying the second term with (n-3)
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\left[ {\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\left( {\dfrac{{{\text{n - 3}}}}{{{\text{n - 3}}}}} \right)} \right]\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left( {{\text{n - 3}}} \right)\]
Now, taking common \[\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]from both terms
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left[ {{\text{n - }}\left( {{\text{n - 3}}} \right)} \right]\]
On further simplification we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{3}}\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$, and simplifying we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}\]
We can write it as ${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$and is having the same value as in our above solution.
Complete step by step answer:
Given data: one-quarter of all three-element subsets of the set ${\text{A = }}{{\text{a}}_{\text{1}}}{\text{,}}{{\text{a}}_{\text{2}}}{\text{,}}{{\text{a}}_{\text{3}}}....{{\text{a}}_{\text{n}}}$ contains the element ${{\text{a}}_{\text{3}}}$
Number of subsets of A containing three elements is ${}^{\text{n}}{{\text{C}}_{\text{3}}}$
The number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$is${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Now, according to the given statement, we can say that
$\dfrac{{\text{1}}}{{\text{4}}}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ = }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ , we’ll get
$\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}$
Now, using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[
\dfrac{{\text{1}}}{{\text{4}}}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}} \\
\Rightarrow \dfrac{{\text{1}}}{{\text{4}}}\dfrac{{\text{n}}}{{{\text{3!}}}}{\text{ = }}\dfrac{{\text{1}}}{{{\text{2!}}}} \\
\]
Now, solving for n, we’ll obtain
\[
{\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3!}} \\
\Rightarrow {\text{n = }}\dfrac{{\text{4}}}{{{\text{2!}}}}{\text{3(2!)}} \\
\Rightarrow {\text{n = 4(3)}} \\
\Rightarrow {\text{n = 12}} \\
\]
Therefore, the value of n is 12
Note: We can also find the number of subsets of A containing three elements in which one of the elements is sure to be ${{\text{a}}_{\text{3}}}$that will be equal to the difference between the number of subsets of A containing three elements and the number of three-element subsets of A do not contain ${{\text{a}}_{\text{3}}}$ i.e.
${\text{ = }}{}^{\text{n}}{{\text{C}}_{\text{3}}}{\text{ - }}{}^{{\text{n - 1}}}{{\text{C}}_{\text{3}}}$
Using ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{r!}}\left( {{\text{n - r}}} \right){\text{!}}}}$ ,
\[{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Using ${\text{n! = n}}\left( {{\text{n - 1}}} \right){\text{!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\]
Dividing and multiplying the second term with (n-3)
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\left[ {\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 4}}} \right){\text{!}}}}\left( {\dfrac{{{\text{n - 3}}}}{{{\text{n - 3}}}}} \right)} \right]\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$
\[{\text{ = }}\dfrac{{{\text{n(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{ - }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left( {{\text{n - 3}}} \right)\]
Now, taking common \[\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]from both terms
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\left[ {{\text{n - }}\left( {{\text{n - 3}}} \right)} \right]\]
On further simplification we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{3!}}\left( {{\text{n - 3}}} \right){\text{!}}}}{\text{3}}\]
Using ${\text{n}}\left( {{\text{n - 1}}} \right){\text{! = n!}}$, and simplifying we get,
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 3}}} \right){\text{!}}}}\]
\[{\text{ = }}\dfrac{{{\text{(n - 1)!}}}}{{{\text{2!}}\left( {{\text{n - 1 - 2}}} \right){\text{!}}}}\]
We can write it as ${}^{{\text{n - 1}}}{{\text{C}}_{\text{2}}}$and is having the same value as in our above solution.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths