
If one of the roots of the equation $4{x^2} - 15x + 4p = 0$ is the square of the other then, the value of $p$ is
$
A.\dfrac{{125}}{{64}} \\
B.\dfrac{{ - 27}}{8} \\
C.\dfrac{{ - 125}}{8} \\
D.\dfrac{{27}}{8} \\
$
Answer
580.5k+ views
Hint: Quadratic equations are the equation that contains at least one squared variable which is equal to zero. Quadratic equations are useful in our daily life; they are used to calculate areas, speed of the objects, projection, etc.
Quadratic equation is given as \[a{x^2} + bx + c = 0\]. This is the basic equation which contains a squared variable \[x\] and three constants a, b and c. The value of the \[x\] in the equation which makes the equation true is known as the roots of the equation. The numbers of roots in the quadratic equations are two as the highest power on the variable of the equation is x. The roots of the equation are given by the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\], where \[{b^2} - 4ac\] tells the nature of the solution.
In the quadratic equation, \[a{x^2} + bx + c = 0\]the sum of the roots is given by \[ -
\dfrac{b}{a}\] whereas their products are given by \[\dfrac{c}{a}\].
In this question, it is already mentioned that one of the roots is the square of the other and so we need to carry out the calculation by taking only variable for the root of the equation $4{x^2} - 15x + 4p = 0$ and determining the relation between the roots and p.
Complete step by step solution: Let one of the roots of the equation $4{x^2} - 15x + 4p = 0$ be $m$ then, according to question the other root will be ${m^2}$.
Now, following the property of the quadratic equation that the product of the roots is equal to the ratio of the coefficient of ${x^0}$ and the coefficient of ${x^2}$.
Here, the coefficient of ${x^0}$is 4p and the coefficient of ${x^2}$ is 4.
Hence,
$
m \times {m^2} = \dfrac{{4p}}{4} \\
{m^3} = p - - - - (i) \\
$
Also, the sum of the roots of the quadratic equation is the negation of the ratio of the coefficient of $x$ and the coefficient of ${x^2}$.
Here, the coefficient of $x$is -15 and the coefficient of ${x^2}$ is 4.
Hence,
\[
m + {m^2} = - \left( {\dfrac{{ - 15}}{4}} \right) \\
{m^2} + m - \dfrac{{15}}{4} = 0 \\
4{m^2} + 4m - 15 = 0 \\
m = \dfrac{{ - 4 \pm \sqrt {{4^2} - 4(4)( - 15)} }}{{2(4)}} \\
= \dfrac{{ - 4 \pm \sqrt {16 + 240} }}{8} \\
= \dfrac{{ - 4 \pm 16}}{8} \\
= - \dfrac{5}{2},\dfrac{3}{2} - - - - (ii) \\
\]
By equation (i) and (ii) we get:
For $m = \dfrac{{ - 5}}{2}$; $p = {\left( {\dfrac{{ - 5}}{2}} \right)^3} = \dfrac{{ - 125}}{8}$
For $m = \dfrac{3}{2}$ ; $p = {\left( {\dfrac{3}{2}} \right)^3} = \dfrac{{27}}{8}$
Hence, the value of p can either be $\dfrac{{ - 125}}{8}$ or $\dfrac{{27}}{8}$.
Option C and D are correct.
Note: In the quadratic equation if \[{b^2} - 4ac > 0\]the equation will have two real roots. If it is equal \[{b^2} - 4ac = 0\] then the equation will have only one real root and when \[{b^2} - 4ac < 0\] then the root is in complex form.
Quadratic equation is given as \[a{x^2} + bx + c = 0\]. This is the basic equation which contains a squared variable \[x\] and three constants a, b and c. The value of the \[x\] in the equation which makes the equation true is known as the roots of the equation. The numbers of roots in the quadratic equations are two as the highest power on the variable of the equation is x. The roots of the equation are given by the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\], where \[{b^2} - 4ac\] tells the nature of the solution.
In the quadratic equation, \[a{x^2} + bx + c = 0\]the sum of the roots is given by \[ -
\dfrac{b}{a}\] whereas their products are given by \[\dfrac{c}{a}\].
In this question, it is already mentioned that one of the roots is the square of the other and so we need to carry out the calculation by taking only variable for the root of the equation $4{x^2} - 15x + 4p = 0$ and determining the relation between the roots and p.
Complete step by step solution: Let one of the roots of the equation $4{x^2} - 15x + 4p = 0$ be $m$ then, according to question the other root will be ${m^2}$.
Now, following the property of the quadratic equation that the product of the roots is equal to the ratio of the coefficient of ${x^0}$ and the coefficient of ${x^2}$.
Here, the coefficient of ${x^0}$is 4p and the coefficient of ${x^2}$ is 4.
Hence,
$
m \times {m^2} = \dfrac{{4p}}{4} \\
{m^3} = p - - - - (i) \\
$
Also, the sum of the roots of the quadratic equation is the negation of the ratio of the coefficient of $x$ and the coefficient of ${x^2}$.
Here, the coefficient of $x$is -15 and the coefficient of ${x^2}$ is 4.
Hence,
\[
m + {m^2} = - \left( {\dfrac{{ - 15}}{4}} \right) \\
{m^2} + m - \dfrac{{15}}{4} = 0 \\
4{m^2} + 4m - 15 = 0 \\
m = \dfrac{{ - 4 \pm \sqrt {{4^2} - 4(4)( - 15)} }}{{2(4)}} \\
= \dfrac{{ - 4 \pm \sqrt {16 + 240} }}{8} \\
= \dfrac{{ - 4 \pm 16}}{8} \\
= - \dfrac{5}{2},\dfrac{3}{2} - - - - (ii) \\
\]
By equation (i) and (ii) we get:
For $m = \dfrac{{ - 5}}{2}$; $p = {\left( {\dfrac{{ - 5}}{2}} \right)^3} = \dfrac{{ - 125}}{8}$
For $m = \dfrac{3}{2}$ ; $p = {\left( {\dfrac{3}{2}} \right)^3} = \dfrac{{27}}{8}$
Hence, the value of p can either be $\dfrac{{ - 125}}{8}$ or $\dfrac{{27}}{8}$.
Option C and D are correct.
Note: In the quadratic equation if \[{b^2} - 4ac > 0\]the equation will have two real roots. If it is equal \[{b^2} - 4ac = 0\] then the equation will have only one real root and when \[{b^2} - 4ac < 0\] then the root is in complex form.
Recently Updated Pages
How to calculate the equivalent weight of copper s class 11 chemistry CBSE

The largest number of molecules is in a 36g of water class 11 chemistry CBSE

An iron ball of radius 03cm falls through a column class 11 physics CBSE

The total number of alkenes possible by debromination class 11 chemistry CBSE

Name the natural source of Acetic acid class 11 chemistry CBSE

When pressure is applied to the equilibrium system class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

