Answer
Verified
383.1k+ views
Hint:Assume the given expression as E. Multiply the terms present in the expression to form a general pattern. Use the formulas $1+\omega +{{\omega }^{2}}=0$ and ${{\omega }^{3}}=1$ to simplify the expression. Now, form the summation series by cancelling the common terms and use the formulas $\sum\limits_{1}^{n}{{{n}^{3}}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$ and $\sum\limits_{1}^{n}{1}=n$ to get the answer. Use the algebraic identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ for the simplification.
Complete step-by-step solution:
Here we have been provided with the expression$1\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)+2\left( 3-\omega \right)\left( 3-{{\omega }^{2}} \right)+....+\left( n-1 \right)\left( n-\omega \right)\left( n-{{\omega }^{2}} \right)$, where $\omega $ is an imaginary cube root of unity and we are asked to find its value. Let us assume the expression as E, so we have,
$\Rightarrow E=1\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)+2\left( 3-\omega \right)\left( 3-{{\omega }^{2}} \right)+....+\left( n-1 \right)\left( n-\omega \right)\left( n-{{\omega }^{2}} \right)$
Now, multiplying the expression in each term we get,
$\Rightarrow E=1\left( {{2}^{2}}-2\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right)+2\left( {{3}^{2}}-3\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right)+....+\left( n-1 \right)\left( {{n}^{2}}-n\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right)$
We know that $1+\omega +{{\omega }^{2}}=0$, so we get $\omega +{{\omega }^{2}}=-1$. Also, multiplying both the sides of the expression $1+\omega +{{\omega }^{2}}=0$ with $\omega $ we get,
$\begin{align}
& \Rightarrow \omega +{{\omega }^{2}}+{{\omega }^{3}}=0 \\
& \Rightarrow {{\omega }^{3}}=-\left( \omega +{{\omega }^{2}} \right) \\
& \Rightarrow {{\omega }^{3}}=1 \\
\end{align}$
Therefore the value of the expression can be simplified by substituting the above values, so we get,
\[\Rightarrow E=1\left( {{2}^{2}}+2+1 \right)+2\left( {{3}^{2}}+3+1 \right)+....+\left( n-1 \right)\left( {{n}^{2}}+n+1 \right)\]
The above expression can be simplified as: -
\[\begin{align}
& \Rightarrow E=\left( 2-1 \right)\left( {{2}^{2}}+\left( 2+1 \right) \right)+\left( 3-1 \right)\left( {{3}^{2}}+\left( 3+1 \right) \right)+....+\left( n-1 \right)\left( {{n}^{2}}+\left( n+1 \right) \right) \\
& \Rightarrow E=\left( {{2}^{3}}-{{2}^{2}} \right)+\left( 2-1 \right)\left( 2+1 \right)+\left( {{3}^{3}}-{{3}^{2}} \right)+\left( 3-1 \right)\left( 3+1 \right)+....+\left( {{n}^{3}}-{{n}^{2}} \right)+\left( n-1 \right)\left( n+1 \right) \\
\end{align}\]
Using the algebraic identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ we get,
\[\Rightarrow E=\left( {{2}^{3}}-{{2}^{2}} \right)+\left( {{2}^{2}}-{{1}^{2}} \right)+\left( {{3}^{3}}-{{3}^{2}} \right)+\left( {{3}^{2}}-{{1}^{2}} \right)+....+\left( {{n}^{3}}-{{n}^{2}} \right)+\left( {{n}^{2}}-{{1}^{2}} \right)\]
Cancelling the like terms we get,
\[\begin{align}
& \Rightarrow E=\left( {{2}^{3}}-{{1}^{2}} \right)+\left( {{3}^{3}}-{{1}^{2}} \right)+....+\left( {{n}^{3}}-{{1}^{2}} \right) \\
& \Rightarrow E=\left( {{2}^{3}}+{{3}^{3}}+.....+{{n}^{3}} \right)-\left( {{1}^{2}}+{{1}^{2}}+.....+{{1}^{2}} \right) \\
& \Rightarrow E=\left( {{2}^{3}}+{{3}^{3}}+.....+{{n}^{3}} \right)-\left( 1+1+1+...+1 \right) \\
\end{align}\]
Now, there are (n – 1) terms inside each bracket because the terms are starting from 2 and ending at n. So let us add ${{1}^{3}}$ and subtract 1 in the above expression which will have no effect on the value of the expression because ${{1}^{3}}=1$. So we get,
\[\Rightarrow E=\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+.....+{{n}^{3}} \right)-\left( 1+1+1+1+...+1 \right)\]
Now, there are n terms in the above expression inside each bracket so we can write the expression in the summation form as: -
$\begin{align}
& \Rightarrow E=\sum\limits_{1}^{n}{\left( {{n}^{3}}-1 \right)} \\
& \Rightarrow E=\sum\limits_{1}^{n}{\left( {{n}^{3}} \right)}-\sum\limits_{1}^{n}{\left( 1 \right)} \\
\end{align}$
Using the formulas $\sum\limits_{1}^{n}{{{n}^{3}}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$ and $\sum\limits_{1}^{n}{1}=n$ we get,
\[\begin{align}
& \Rightarrow E={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}-n \\
& \therefore E=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4}-n \\
\end{align}\]
Hence, option (b) is the correct answer.
Note: You must remember all the formulas related to the cube roots of unity. Note that the value of $\omega $ is equal to $\dfrac{-1+\sqrt{3}i}{2}$ and that of \[{{\omega }^{2}}\] is equal to $\dfrac{-1-\sqrt{3}i}{2}$. Here $i$ id the imaginary number $\sqrt{-1}$. Remember the formulas of sum of first n natural numbers, sum of squares of first n natural numbers and the sum of cubes of first n natural numbers.
Complete step-by-step solution:
Here we have been provided with the expression$1\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)+2\left( 3-\omega \right)\left( 3-{{\omega }^{2}} \right)+....+\left( n-1 \right)\left( n-\omega \right)\left( n-{{\omega }^{2}} \right)$, where $\omega $ is an imaginary cube root of unity and we are asked to find its value. Let us assume the expression as E, so we have,
$\Rightarrow E=1\left( 2-\omega \right)\left( 2-{{\omega }^{2}} \right)+2\left( 3-\omega \right)\left( 3-{{\omega }^{2}} \right)+....+\left( n-1 \right)\left( n-\omega \right)\left( n-{{\omega }^{2}} \right)$
Now, multiplying the expression in each term we get,
$\Rightarrow E=1\left( {{2}^{2}}-2\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right)+2\left( {{3}^{2}}-3\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right)+....+\left( n-1 \right)\left( {{n}^{2}}-n\left( \omega +{{\omega }^{2}} \right)+{{\omega }^{3}} \right)$
We know that $1+\omega +{{\omega }^{2}}=0$, so we get $\omega +{{\omega }^{2}}=-1$. Also, multiplying both the sides of the expression $1+\omega +{{\omega }^{2}}=0$ with $\omega $ we get,
$\begin{align}
& \Rightarrow \omega +{{\omega }^{2}}+{{\omega }^{3}}=0 \\
& \Rightarrow {{\omega }^{3}}=-\left( \omega +{{\omega }^{2}} \right) \\
& \Rightarrow {{\omega }^{3}}=1 \\
\end{align}$
Therefore the value of the expression can be simplified by substituting the above values, so we get,
\[\Rightarrow E=1\left( {{2}^{2}}+2+1 \right)+2\left( {{3}^{2}}+3+1 \right)+....+\left( n-1 \right)\left( {{n}^{2}}+n+1 \right)\]
The above expression can be simplified as: -
\[\begin{align}
& \Rightarrow E=\left( 2-1 \right)\left( {{2}^{2}}+\left( 2+1 \right) \right)+\left( 3-1 \right)\left( {{3}^{2}}+\left( 3+1 \right) \right)+....+\left( n-1 \right)\left( {{n}^{2}}+\left( n+1 \right) \right) \\
& \Rightarrow E=\left( {{2}^{3}}-{{2}^{2}} \right)+\left( 2-1 \right)\left( 2+1 \right)+\left( {{3}^{3}}-{{3}^{2}} \right)+\left( 3-1 \right)\left( 3+1 \right)+....+\left( {{n}^{3}}-{{n}^{2}} \right)+\left( n-1 \right)\left( n+1 \right) \\
\end{align}\]
Using the algebraic identity $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ we get,
\[\Rightarrow E=\left( {{2}^{3}}-{{2}^{2}} \right)+\left( {{2}^{2}}-{{1}^{2}} \right)+\left( {{3}^{3}}-{{3}^{2}} \right)+\left( {{3}^{2}}-{{1}^{2}} \right)+....+\left( {{n}^{3}}-{{n}^{2}} \right)+\left( {{n}^{2}}-{{1}^{2}} \right)\]
Cancelling the like terms we get,
\[\begin{align}
& \Rightarrow E=\left( {{2}^{3}}-{{1}^{2}} \right)+\left( {{3}^{3}}-{{1}^{2}} \right)+....+\left( {{n}^{3}}-{{1}^{2}} \right) \\
& \Rightarrow E=\left( {{2}^{3}}+{{3}^{3}}+.....+{{n}^{3}} \right)-\left( {{1}^{2}}+{{1}^{2}}+.....+{{1}^{2}} \right) \\
& \Rightarrow E=\left( {{2}^{3}}+{{3}^{3}}+.....+{{n}^{3}} \right)-\left( 1+1+1+...+1 \right) \\
\end{align}\]
Now, there are (n – 1) terms inside each bracket because the terms are starting from 2 and ending at n. So let us add ${{1}^{3}}$ and subtract 1 in the above expression which will have no effect on the value of the expression because ${{1}^{3}}=1$. So we get,
\[\Rightarrow E=\left( {{1}^{3}}+{{2}^{3}}+{{3}^{3}}+.....+{{n}^{3}} \right)-\left( 1+1+1+1+...+1 \right)\]
Now, there are n terms in the above expression inside each bracket so we can write the expression in the summation form as: -
$\begin{align}
& \Rightarrow E=\sum\limits_{1}^{n}{\left( {{n}^{3}}-1 \right)} \\
& \Rightarrow E=\sum\limits_{1}^{n}{\left( {{n}^{3}} \right)}-\sum\limits_{1}^{n}{\left( 1 \right)} \\
\end{align}$
Using the formulas $\sum\limits_{1}^{n}{{{n}^{3}}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}$ and $\sum\limits_{1}^{n}{1}=n$ we get,
\[\begin{align}
& \Rightarrow E={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}}-n \\
& \therefore E=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4}-n \\
\end{align}\]
Hence, option (b) is the correct answer.
Note: You must remember all the formulas related to the cube roots of unity. Note that the value of $\omega $ is equal to $\dfrac{-1+\sqrt{3}i}{2}$ and that of \[{{\omega }^{2}}\] is equal to $\dfrac{-1-\sqrt{3}i}{2}$. Here $i$ id the imaginary number $\sqrt{-1}$. Remember the formulas of sum of first n natural numbers, sum of squares of first n natural numbers and the sum of cubes of first n natural numbers.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE