
If $\omega $ is an imaginary cube root of unity, then ${{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}$ equals
(a) $128\omega $
(b) $-128\omega $
(c) $128{{\omega }^{2}}$
(d) $-128{{\omega }^{2}}$
Answer
605.4k+ views
Hint: The sum of $1,\omega $ and ${{\omega }^{2}}$ is equal to 0 where $1,\omega $ and ${{\omega }^{2}}$ are the cube roots of unity . Also, ${{\omega }^{3}}=1$.
Before proceeding with the question, we must know some properties which are related to the cube roots of unity i.e. \[1,\omega ,{{\omega }^{2}}\] which will be used to solve this question. These properties are,
$1+\omega +{{\omega }^{2}}=0..........\left( 1 \right)$
${{\omega }^{3n}}=1..........\left( 2 \right)$, where $n$ is an integer.
In this question, we have to find the value of ${{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}$. From equation $\left( 1 \right)$, we have,
$1+\omega +{{\omega }^{2}}=0$
Hence, we can also write $1+\omega =-{{\omega }^{2}}.............\left( 4 \right)$
Substituting $1+\omega =-{{\omega }^{2}}$ from equation $\left( 4 \right)$ in equation $\left( 2 \right)$, we get,
\[\begin{align}
& {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}={{\left( -{{\omega }^{2}}-{{\omega }^{2}} \right)}^{7}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}={{\left( -2{{\omega }^{2}} \right)}^{7}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}={{\left( -2 \right)}^{7}}{{\left( {{\omega }^{2}} \right)}^{7}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{14}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{12+2}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{12}}{{\omega }^{2}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{3\left( 4 \right)}}{{\omega }^{2}}...............\left( 5 \right) \\
\end{align}\]
From equation $\left( 2 \right)$, we have ${{\omega }^{3n}}=1$ where $n$ is an integer. Since $4$ is an integer, we can substitute $n=4$ in equation $\left( 2 \right)$. So, substituting $n=4$ in equation $\left( 2 \right)$, we get,
${{\omega }^{3(4)}}=1.......\left( 6 \right)$
From $\left( 6 \right)$, we have ${{\omega }^{3(4)}}=1$. Substituting ${{\omega }^{3(4)}}=1$ from equation $\left( 6 \right)$ in equation $\left( 5 \right)$, we get,
\[\begin{align}
& {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128\left( 1 \right){{\omega }^{2}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{2}} \\
\end{align}\]
So,the answer is option (d)
Note: In this question, it was easier to think of writing ${{\omega }^{14}}$ as ${{\omega }^{12+2}}$ where $12$ is a multiple of $3$ because $14$ is a comparatively smaller number and it is easier to express $14$ in the form of a multiple of $3$. But if we get a larger number, it is difficult to convert that number directly in the form of the multiple of $3$. So, in that case, we will divide that number by long division method to find the divisor, quotient and remainder. Then we express that number in the form of the multiple of $3$ using the formula, $number=\left( divisor \right)\times \left( quotient \right)+remainder$, where the $divisor=3$. For example if we have a number $149$ in the power of $\omega $, dividing $149$ by $3$ using a long division method, we will get $divisor=3,quotient=49,remainder=2$. Hence, we can express $149$ as $149=\left( 3 \right)\left( 49 \right)+2$. Therefore, we expressed $149$ in the form of multiple of $3$.
Before proceeding with the question, we must know some properties which are related to the cube roots of unity i.e. \[1,\omega ,{{\omega }^{2}}\] which will be used to solve this question. These properties are,
$1+\omega +{{\omega }^{2}}=0..........\left( 1 \right)$
${{\omega }^{3n}}=1..........\left( 2 \right)$, where $n$ is an integer.
In this question, we have to find the value of ${{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}$. From equation $\left( 1 \right)$, we have,
$1+\omega +{{\omega }^{2}}=0$
Hence, we can also write $1+\omega =-{{\omega }^{2}}.............\left( 4 \right)$
Substituting $1+\omega =-{{\omega }^{2}}$ from equation $\left( 4 \right)$ in equation $\left( 2 \right)$, we get,
\[\begin{align}
& {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}={{\left( -{{\omega }^{2}}-{{\omega }^{2}} \right)}^{7}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}={{\left( -2{{\omega }^{2}} \right)}^{7}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}={{\left( -2 \right)}^{7}}{{\left( {{\omega }^{2}} \right)}^{7}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{14}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{12+2}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{12}}{{\omega }^{2}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{3\left( 4 \right)}}{{\omega }^{2}}...............\left( 5 \right) \\
\end{align}\]
From equation $\left( 2 \right)$, we have ${{\omega }^{3n}}=1$ where $n$ is an integer. Since $4$ is an integer, we can substitute $n=4$ in equation $\left( 2 \right)$. So, substituting $n=4$ in equation $\left( 2 \right)$, we get,
${{\omega }^{3(4)}}=1.......\left( 6 \right)$
From $\left( 6 \right)$, we have ${{\omega }^{3(4)}}=1$. Substituting ${{\omega }^{3(4)}}=1$ from equation $\left( 6 \right)$ in equation $\left( 5 \right)$, we get,
\[\begin{align}
& {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128\left( 1 \right){{\omega }^{2}} \\
& \Rightarrow {{\left( 1+\omega -{{\omega }^{2}} \right)}^{7}}=-128{{\omega }^{2}} \\
\end{align}\]
So,the answer is option (d)
Note: In this question, it was easier to think of writing ${{\omega }^{14}}$ as ${{\omega }^{12+2}}$ where $12$ is a multiple of $3$ because $14$ is a comparatively smaller number and it is easier to express $14$ in the form of a multiple of $3$. But if we get a larger number, it is difficult to convert that number directly in the form of the multiple of $3$. So, in that case, we will divide that number by long division method to find the divisor, quotient and remainder. Then we express that number in the form of the multiple of $3$ using the formula, $number=\left( divisor \right)\times \left( quotient \right)+remainder$, where the $divisor=3$. For example if we have a number $149$ in the power of $\omega $, dividing $149$ by $3$ using a long division method, we will get $divisor=3,quotient=49,remainder=2$. Hence, we can express $149$ as $149=\left( 3 \right)\left( 49 \right)+2$. Therefore, we expressed $149$ in the form of multiple of $3$.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

