
If $O$ is the origin $OP = 6$ with $DR's - 2,4, - 4$ then the coordinate of $P$ are
A) $2, - 4,4$
B) $ - 2,4, - 4$
C) $ - \dfrac{1}{3},\dfrac{2}{3}, - \dfrac{2}{3}$
D) None of these
Answer
579.3k+ views
Hint:Let $O$ be the origin and $P$ be any point. If $OP = r$ and $a,b,c$ be the Direction Ratios of$OP$ , then Direction Cosines of $OP$ are $ \pm \dfrac{a}{r}, \pm \dfrac{b}{r}, \pm \dfrac{c}{r}.$
Let $O$ be the origin and $P(x,y,z)$ be any point. Also if $OP = r$ and $l,m,n$ be Direction Cosines of $OP$ then $x = lr,y = mr,z = nr.$ so the coordinates of P are $(lr,mr,nr).$
Complete step-by-step answer:
It is given that $OP = 6$, and also given that their direction ratios as -2, 4,-4.
From the given hint and the given Direction Ratios of $OP$ Also $OP = 6$
The Direction Cosines of $OP$ are $ \pm \left( {\dfrac{{ - 2}}{6}} \right), \pm \left( {\dfrac{4}{6}} \right), \pm \left( {\dfrac{{ - 4}}{6}} \right)$ .
Now let us simplify the direction cosines we get, $ \pm \left( {\dfrac{{ - 1}}{3}} \right), \pm \left( {\dfrac{2}{3}} \right), \pm \left( {\dfrac{{ - 2}}{3}} \right)$
Now let us take positive signs in the Direction Cosines of $OP$.
Hence we get the following values $\dfrac{{ - 1}}{3},\dfrac{2}{3},\dfrac{{ - 2}}{3}.$
From $ \pm \left( {\dfrac{{ - 1}}{3}} \right), \pm \left( {\dfrac{2}{3}} \right), \pm \left( {\dfrac{{ - 2}}{3}} \right)$ this value let us consider the negative sign in the Direction Cosines of $OP$ $\dfrac{1}{3},\dfrac{{ - 2}}{3},\dfrac{2}{3}.$
Let the coordinates of P be $(x,y,z).$
Now let us take the following values $\dfrac{{ - 1}}{3},\dfrac{2}{3},\dfrac{{ - 2}}{3}.$
Hence we get, $l = \dfrac{{ - 1}}{3},\quad m = \dfrac{2}{3},\quad n = \dfrac{{ - 2}}{3}$ and $r = 6$ we get,
From the given hint we can find the value of x, y, z $x = \dfrac{{ - 1}}{3} \times 6 = - 2,\;\;y = \dfrac{2}{3} \times 6 = 4,\;\;z = \dfrac{{ - 2}}{3} \times 6 = - 4.$
Here x=-2, y=4 and z=-4.
So the coordinates of $P$ are $\left( { - 2,4, - 4} \right).$
Now let us consider the following values $\dfrac{1}{3},\dfrac{{ - 2}}{3},\dfrac{2}{3}.$
Hence we get, $l = \dfrac{1}{3},\quad m = \dfrac{{ - 2}}{3},\quad n = \dfrac{2}{3}$ and $r = 6$ we get,
Let us solve using the hint for x,y,z $x = \dfrac{1}{3} \times 6 = 2,\;\;y = \dfrac{{ - 2}}{3} \times 6 = - 4,\;\;z = \dfrac{2}{3} \times 6 = 4.$
Here x=2, y=-4 and z=4.
In this case the coordinates of $P$ are $\left( {2, - 4,4} \right).$
Hence,
We have found that the coordinates of $P$ are either $A)\;\;2,\; - 4,\;4$ or $B)\;\; - 2,\;4,\; - 4.$
Note:In the process of finding Direction Cosines from Direction Ratios the same sign must be taken throughout. Sign should not be changed.
Let $O$ be the origin and $P(x,y,z)$ be any point. Also if $OP = r$ and $l,m,n$ be Direction Cosines of $OP$ then $x = lr,y = mr,z = nr.$ so the coordinates of P are $(lr,mr,nr).$
Complete step-by-step answer:
It is given that $OP = 6$, and also given that their direction ratios as -2, 4,-4.
From the given hint and the given Direction Ratios of $OP$ Also $OP = 6$
The Direction Cosines of $OP$ are $ \pm \left( {\dfrac{{ - 2}}{6}} \right), \pm \left( {\dfrac{4}{6}} \right), \pm \left( {\dfrac{{ - 4}}{6}} \right)$ .
Now let us simplify the direction cosines we get, $ \pm \left( {\dfrac{{ - 1}}{3}} \right), \pm \left( {\dfrac{2}{3}} \right), \pm \left( {\dfrac{{ - 2}}{3}} \right)$
Now let us take positive signs in the Direction Cosines of $OP$.
Hence we get the following values $\dfrac{{ - 1}}{3},\dfrac{2}{3},\dfrac{{ - 2}}{3}.$
From $ \pm \left( {\dfrac{{ - 1}}{3}} \right), \pm \left( {\dfrac{2}{3}} \right), \pm \left( {\dfrac{{ - 2}}{3}} \right)$ this value let us consider the negative sign in the Direction Cosines of $OP$ $\dfrac{1}{3},\dfrac{{ - 2}}{3},\dfrac{2}{3}.$
Let the coordinates of P be $(x,y,z).$
Now let us take the following values $\dfrac{{ - 1}}{3},\dfrac{2}{3},\dfrac{{ - 2}}{3}.$
Hence we get, $l = \dfrac{{ - 1}}{3},\quad m = \dfrac{2}{3},\quad n = \dfrac{{ - 2}}{3}$ and $r = 6$ we get,
From the given hint we can find the value of x, y, z $x = \dfrac{{ - 1}}{3} \times 6 = - 2,\;\;y = \dfrac{2}{3} \times 6 = 4,\;\;z = \dfrac{{ - 2}}{3} \times 6 = - 4.$
Here x=-2, y=4 and z=-4.
So the coordinates of $P$ are $\left( { - 2,4, - 4} \right).$
Now let us consider the following values $\dfrac{1}{3},\dfrac{{ - 2}}{3},\dfrac{2}{3}.$
Hence we get, $l = \dfrac{1}{3},\quad m = \dfrac{{ - 2}}{3},\quad n = \dfrac{2}{3}$ and $r = 6$ we get,
Let us solve using the hint for x,y,z $x = \dfrac{1}{3} \times 6 = 2,\;\;y = \dfrac{{ - 2}}{3} \times 6 = - 4,\;\;z = \dfrac{2}{3} \times 6 = 4.$
Here x=2, y=-4 and z=4.
In this case the coordinates of $P$ are $\left( {2, - 4,4} \right).$
Hence,
We have found that the coordinates of $P$ are either $A)\;\;2,\; - 4,\;4$ or $B)\;\; - 2,\;4,\; - 4.$
Note:In the process of finding Direction Cosines from Direction Ratios the same sign must be taken throughout. Sign should not be changed.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

