
If $O$ is the origin $OP = 6$ with $DR's - 2,4, - 4$ then the coordinate of $P$ are
A) $2, - 4,4$
B) $ - 2,4, - 4$
C) $ - \dfrac{1}{3},\dfrac{2}{3}, - \dfrac{2}{3}$
D) None of these
Answer
593.4k+ views
Hint:Let $O$ be the origin and $P$ be any point. If $OP = r$ and $a,b,c$ be the Direction Ratios of$OP$ , then Direction Cosines of $OP$ are $ \pm \dfrac{a}{r}, \pm \dfrac{b}{r}, \pm \dfrac{c}{r}.$
Let $O$ be the origin and $P(x,y,z)$ be any point. Also if $OP = r$ and $l,m,n$ be Direction Cosines of $OP$ then $x = lr,y = mr,z = nr.$ so the coordinates of P are $(lr,mr,nr).$
Complete step-by-step answer:
It is given that $OP = 6$, and also given that their direction ratios as -2, 4,-4.
From the given hint and the given Direction Ratios of $OP$ Also $OP = 6$
The Direction Cosines of $OP$ are $ \pm \left( {\dfrac{{ - 2}}{6}} \right), \pm \left( {\dfrac{4}{6}} \right), \pm \left( {\dfrac{{ - 4}}{6}} \right)$ .
Now let us simplify the direction cosines we get, $ \pm \left( {\dfrac{{ - 1}}{3}} \right), \pm \left( {\dfrac{2}{3}} \right), \pm \left( {\dfrac{{ - 2}}{3}} \right)$
Now let us take positive signs in the Direction Cosines of $OP$.
Hence we get the following values $\dfrac{{ - 1}}{3},\dfrac{2}{3},\dfrac{{ - 2}}{3}.$
From $ \pm \left( {\dfrac{{ - 1}}{3}} \right), \pm \left( {\dfrac{2}{3}} \right), \pm \left( {\dfrac{{ - 2}}{3}} \right)$ this value let us consider the negative sign in the Direction Cosines of $OP$ $\dfrac{1}{3},\dfrac{{ - 2}}{3},\dfrac{2}{3}.$
Let the coordinates of P be $(x,y,z).$
Now let us take the following values $\dfrac{{ - 1}}{3},\dfrac{2}{3},\dfrac{{ - 2}}{3}.$
Hence we get, $l = \dfrac{{ - 1}}{3},\quad m = \dfrac{2}{3},\quad n = \dfrac{{ - 2}}{3}$ and $r = 6$ we get,
From the given hint we can find the value of x, y, z $x = \dfrac{{ - 1}}{3} \times 6 = - 2,\;\;y = \dfrac{2}{3} \times 6 = 4,\;\;z = \dfrac{{ - 2}}{3} \times 6 = - 4.$
Here x=-2, y=4 and z=-4.
So the coordinates of $P$ are $\left( { - 2,4, - 4} \right).$
Now let us consider the following values $\dfrac{1}{3},\dfrac{{ - 2}}{3},\dfrac{2}{3}.$
Hence we get, $l = \dfrac{1}{3},\quad m = \dfrac{{ - 2}}{3},\quad n = \dfrac{2}{3}$ and $r = 6$ we get,
Let us solve using the hint for x,y,z $x = \dfrac{1}{3} \times 6 = 2,\;\;y = \dfrac{{ - 2}}{3} \times 6 = - 4,\;\;z = \dfrac{2}{3} \times 6 = 4.$
Here x=2, y=-4 and z=4.
In this case the coordinates of $P$ are $\left( {2, - 4,4} \right).$
Hence,
We have found that the coordinates of $P$ are either $A)\;\;2,\; - 4,\;4$ or $B)\;\; - 2,\;4,\; - 4.$
Note:In the process of finding Direction Cosines from Direction Ratios the same sign must be taken throughout. Sign should not be changed.
Let $O$ be the origin and $P(x,y,z)$ be any point. Also if $OP = r$ and $l,m,n$ be Direction Cosines of $OP$ then $x = lr,y = mr,z = nr.$ so the coordinates of P are $(lr,mr,nr).$
Complete step-by-step answer:
It is given that $OP = 6$, and also given that their direction ratios as -2, 4,-4.
From the given hint and the given Direction Ratios of $OP$ Also $OP = 6$
The Direction Cosines of $OP$ are $ \pm \left( {\dfrac{{ - 2}}{6}} \right), \pm \left( {\dfrac{4}{6}} \right), \pm \left( {\dfrac{{ - 4}}{6}} \right)$ .
Now let us simplify the direction cosines we get, $ \pm \left( {\dfrac{{ - 1}}{3}} \right), \pm \left( {\dfrac{2}{3}} \right), \pm \left( {\dfrac{{ - 2}}{3}} \right)$
Now let us take positive signs in the Direction Cosines of $OP$.
Hence we get the following values $\dfrac{{ - 1}}{3},\dfrac{2}{3},\dfrac{{ - 2}}{3}.$
From $ \pm \left( {\dfrac{{ - 1}}{3}} \right), \pm \left( {\dfrac{2}{3}} \right), \pm \left( {\dfrac{{ - 2}}{3}} \right)$ this value let us consider the negative sign in the Direction Cosines of $OP$ $\dfrac{1}{3},\dfrac{{ - 2}}{3},\dfrac{2}{3}.$
Let the coordinates of P be $(x,y,z).$
Now let us take the following values $\dfrac{{ - 1}}{3},\dfrac{2}{3},\dfrac{{ - 2}}{3}.$
Hence we get, $l = \dfrac{{ - 1}}{3},\quad m = \dfrac{2}{3},\quad n = \dfrac{{ - 2}}{3}$ and $r = 6$ we get,
From the given hint we can find the value of x, y, z $x = \dfrac{{ - 1}}{3} \times 6 = - 2,\;\;y = \dfrac{2}{3} \times 6 = 4,\;\;z = \dfrac{{ - 2}}{3} \times 6 = - 4.$
Here x=-2, y=4 and z=-4.
So the coordinates of $P$ are $\left( { - 2,4, - 4} \right).$
Now let us consider the following values $\dfrac{1}{3},\dfrac{{ - 2}}{3},\dfrac{2}{3}.$
Hence we get, $l = \dfrac{1}{3},\quad m = \dfrac{{ - 2}}{3},\quad n = \dfrac{2}{3}$ and $r = 6$ we get,
Let us solve using the hint for x,y,z $x = \dfrac{1}{3} \times 6 = 2,\;\;y = \dfrac{{ - 2}}{3} \times 6 = - 4,\;\;z = \dfrac{2}{3} \times 6 = 4.$
Here x=2, y=-4 and z=4.
In this case the coordinates of $P$ are $\left( {2, - 4,4} \right).$
Hence,
We have found that the coordinates of $P$ are either $A)\;\;2,\; - 4,\;4$ or $B)\;\; - 2,\;4,\; - 4.$
Note:In the process of finding Direction Cosines from Direction Ratios the same sign must be taken throughout. Sign should not be changed.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

