
If ${}^n{P_r} = {}^n{P_{r + 1}}$ and ${}^n{C_r} = {}^n{C_{r - 1}}$ , find n and r.
Answer
607.8k+ views
Hint: By the use of Permutation and Combination formulae and properties we will find the values of n and r.
Given,
${}^n{P_r} = {}^n{P_{r + 1}} \to (1)$
Since, we know that the number of permutations of n objects taken r at a time is ${}^n{P_r}$ and its value is $\dfrac{{n!}}{{(n - r)!}}$ . Similarly, the value of ${}^n{P_{r + 1}}$ is equal to $\dfrac{{n!}}{{(n - r - 1)!}}$. So, applying the formulae in equation (1), we get
$
\Rightarrow \dfrac{{n!}}{{(n - r)!}} = \dfrac{{n!}}{{(n - r - 1)!}} \\
\Rightarrow (n - r - 1)! = (n - r)! \to (2) \\
$
As, we know that $n! = n*(n - 1)!$ . Therefore, $(n - r)! = (n - r)*(n - r - 1)!$ . Rewriting equation (2), we get
$ \Rightarrow (n - r - 1)! = (n - r)*(n - r - 1)!$
The term $(n - r - 1)!$ gets cancelled on both sides, then the equation will be
$
\Rightarrow 1 = (n - r) \\
\Rightarrow n = r + 1 \to (3) \\
$
Now, let us consider the given condition ${}^n{C_r} = {}^n{C_{r - 1}} \to (4)$. As, we know the property of combination i.e.., if ${}^n{C_x} = {}^n{C_y}$ then $x = y$ or $x + y = n$. Therefore, using the property of combinations, equation (4) can be written as
$
\Rightarrow r + r - 1 = n \\
\Rightarrow 2r - 1 = n \\
$
Let us substitute the value of n from equation (3) in the above equation, we get
$
\Rightarrow 2r - 1 = r + 1 \\
\Rightarrow 2r - r = 1 + 1 \\
\Rightarrow r = 2 \\
$
Hence, the obtained value of r is 2.let us substitute the value of r in equation (3), we get
$
\Rightarrow n = 2 + 1 \\
\Rightarrow n = 3 \\
$
Therefore, the obtained value of n is 3 and r is 2.
Note: Here, we have considered $r + r - 1 = n$ condition, because if we consider the condition $r = r - 1$ the value of r can’t be computed.
Given,
${}^n{P_r} = {}^n{P_{r + 1}} \to (1)$
Since, we know that the number of permutations of n objects taken r at a time is ${}^n{P_r}$ and its value is $\dfrac{{n!}}{{(n - r)!}}$ . Similarly, the value of ${}^n{P_{r + 1}}$ is equal to $\dfrac{{n!}}{{(n - r - 1)!}}$. So, applying the formulae in equation (1), we get
$
\Rightarrow \dfrac{{n!}}{{(n - r)!}} = \dfrac{{n!}}{{(n - r - 1)!}} \\
\Rightarrow (n - r - 1)! = (n - r)! \to (2) \\
$
As, we know that $n! = n*(n - 1)!$ . Therefore, $(n - r)! = (n - r)*(n - r - 1)!$ . Rewriting equation (2), we get
$ \Rightarrow (n - r - 1)! = (n - r)*(n - r - 1)!$
The term $(n - r - 1)!$ gets cancelled on both sides, then the equation will be
$
\Rightarrow 1 = (n - r) \\
\Rightarrow n = r + 1 \to (3) \\
$
Now, let us consider the given condition ${}^n{C_r} = {}^n{C_{r - 1}} \to (4)$. As, we know the property of combination i.e.., if ${}^n{C_x} = {}^n{C_y}$ then $x = y$ or $x + y = n$. Therefore, using the property of combinations, equation (4) can be written as
$
\Rightarrow r + r - 1 = n \\
\Rightarrow 2r - 1 = n \\
$
Let us substitute the value of n from equation (3) in the above equation, we get
$
\Rightarrow 2r - 1 = r + 1 \\
\Rightarrow 2r - r = 1 + 1 \\
\Rightarrow r = 2 \\
$
Hence, the obtained value of r is 2.let us substitute the value of r in equation (3), we get
$
\Rightarrow n = 2 + 1 \\
\Rightarrow n = 3 \\
$
Therefore, the obtained value of n is 3 and r is 2.
Note: Here, we have considered $r + r - 1 = n$ condition, because if we consider the condition $r = r - 1$ the value of r can’t be computed.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

