
If \[{}^n{P_2} = 90\] then find the value of \[n\].
Answer
457.5k+ views
Hint: Here, we will compare the given equation to the formula of Permutations and solving this further using factorials we will get a quadratic equation. We will solve the equation using the method of middle term splitting and find the required value of \[n\].
Formula Used:
We will use the following formulas:
1. \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the total number of terms and \[r\] is the number of terms to be arranged among them.
2. \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1\]
Complete step-by-step answer:
We will consider the left hand side of the given equation \[{}^n{P_2} = 90\].
Substituting \[r = 2\] in the formula \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], we get,
\[{}^n{P_2} = \dfrac{{n!}}{{\left( {n - 2} \right)!}}\]…………………………. \[\left( 1 \right)\]
Substituting \[{}^n{P_2} = 90\] in the above equation, we get
\[ \Rightarrow \dfrac{{n!}}{{\left( {n - 2} \right)!}} = 90\]
Computing the factorials using the formula \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1\], we get
\[ \Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}} = 90\]
Solving the above equation further, we get
\[ \Rightarrow n\left( {n - 1} \right) = 90\]
Multiplying the terms using distributive property, we get
\[ \Rightarrow {n^2} - n - 90 = 0\]
The above equation is a quadratic, we will factorize the equation to find the value of \[n\].
Now, splitting the middle term split, we get
\[ \Rightarrow {n^2} - 10n + 9n - 90 = 0\]
Now factoring out common terms, we get
\[ \Rightarrow n\left( {n - 10} \right) + 9\left( {n - 10} \right) = 0\]
Again factoring out the common terms, we get
\[ \Rightarrow \left( {n + 9} \right)\left( {n - 10} \right) = 0\]
Now using zero product property, we get
\[\begin{array}{l} \Rightarrow \left( {n + 9} \right) = 0\\ \Rightarrow n = - 9\end{array}\]
Or
\[\begin{array}{l} \Rightarrow \left( {n - 10} \right) = 0\\ \Rightarrow n = 10\end{array}\]
But, the total number of terms cannot be negative.
Hence, rejecting the negative value, \[n \ne - 9\]
Therefore, the required value of \[n\] is 10.
Note: In this question, we are required to use the formula of Permutations. Permutation is a way or method of arranging elements from a given set of elements, where the order or sequence of arrangement matters. We might make a mistake by using the formula of combination instead of permutation. Combination is a method of selecting elements from a given set but the order of selection doesn’t matter.
Formula Used:
We will use the following formulas:
1. \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the total number of terms and \[r\] is the number of terms to be arranged among them.
2. \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1\]
Complete step-by-step answer:
We will consider the left hand side of the given equation \[{}^n{P_2} = 90\].
Substituting \[r = 2\] in the formula \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], we get,
\[{}^n{P_2} = \dfrac{{n!}}{{\left( {n - 2} \right)!}}\]…………………………. \[\left( 1 \right)\]
Substituting \[{}^n{P_2} = 90\] in the above equation, we get
\[ \Rightarrow \dfrac{{n!}}{{\left( {n - 2} \right)!}} = 90\]
Computing the factorials using the formula \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times ...... \times 3 \times 2 \times 1\], we get
\[ \Rightarrow \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!}} = 90\]
Solving the above equation further, we get
\[ \Rightarrow n\left( {n - 1} \right) = 90\]
Multiplying the terms using distributive property, we get
\[ \Rightarrow {n^2} - n - 90 = 0\]
The above equation is a quadratic, we will factorize the equation to find the value of \[n\].
Now, splitting the middle term split, we get
\[ \Rightarrow {n^2} - 10n + 9n - 90 = 0\]
Now factoring out common terms, we get
\[ \Rightarrow n\left( {n - 10} \right) + 9\left( {n - 10} \right) = 0\]
Again factoring out the common terms, we get
\[ \Rightarrow \left( {n + 9} \right)\left( {n - 10} \right) = 0\]
Now using zero product property, we get
\[\begin{array}{l} \Rightarrow \left( {n + 9} \right) = 0\\ \Rightarrow n = - 9\end{array}\]
Or
\[\begin{array}{l} \Rightarrow \left( {n - 10} \right) = 0\\ \Rightarrow n = 10\end{array}\]
But, the total number of terms cannot be negative.
Hence, rejecting the negative value, \[n \ne - 9\]
Therefore, the required value of \[n\] is 10.
Note: In this question, we are required to use the formula of Permutations. Permutation is a way or method of arranging elements from a given set of elements, where the order or sequence of arrangement matters. We might make a mistake by using the formula of combination instead of permutation. Combination is a method of selecting elements from a given set but the order of selection doesn’t matter.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
