
If \[{}^n{C_3} = {}^n{C_2}\], then \[n\] is equal to
A) \[2\]
B) \[3\]
C) \[5\]
D) None of these.
Answer
505.2k+ views
Hint: First we have to know a combination is a mathematical technique that determines the number of possible arrangements in a collection of items where we select the items in any order. Using the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\;\;r!\;}}\] where \[n\] is the total items in the set and \[r\] is the number of items taken for the permutation to find the value of \[n\].
Complete step by step solution:
The factorial of a natural number is a number multiplied by "number minus one", then by "number minus two", and so on till \[1\] i.e., \[n! = n \times \left( {n - 1} \right) \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times - - - \times 2 \times 1\] . The factorial of \[n\] is denoted as \[n!\].
Given \[{}^n{C_3} = {}^n{C_2}\]---(1)
Using the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\;\;r!\;}}\]in the equation (1), we get
\[\dfrac{{n!}}{{\left( {n - 3} \right)!\;\;3!\;}} = \dfrac{{n!}}{{\left( {n - 2} \right)!\;\;2!\;}}\]---(2)
Since \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)!\] and \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!\] then the equation (2) becomes
\[\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}{{\left( {n - 3} \right)!\;\;3!\;}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!\;\;2!\;}}\]--(3)
Since \[3! = 3 \times 2 \times 1 = 6\] and \[2! = 2\] then the equation (3) becomes
\[\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}{{\left( {n - 3} \right)!\;6\;\;}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!\;\;2\;}}\]--(4)
Simplifying the equation (4), we get
\[\dfrac{{\left( {n - 2} \right)}}{{6\;}} = \dfrac{1}{{2\;}}\]
\[ \Rightarrow n - 2 = 3\]
\[ \Rightarrow n = 5\]
Hence, $n=5$. So, Option (C) is correct.
Note:
Note that a permutation is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter. The formula for a permutation is \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] where \[n\] is the total items in the set and \[r\] is the number of items taken for the permutation.
Complete step by step solution:
The factorial of a natural number is a number multiplied by "number minus one", then by "number minus two", and so on till \[1\] i.e., \[n! = n \times \left( {n - 1} \right) \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times - - - \times 2 \times 1\] . The factorial of \[n\] is denoted as \[n!\].
Given \[{}^n{C_3} = {}^n{C_2}\]---(1)
Using the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\;\;r!\;}}\]in the equation (1), we get
\[\dfrac{{n!}}{{\left( {n - 3} \right)!\;\;3!\;}} = \dfrac{{n!}}{{\left( {n - 2} \right)!\;\;2!\;}}\]---(2)
Since \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)!\] and \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!\] then the equation (2) becomes
\[\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}{{\left( {n - 3} \right)!\;\;3!\;}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!\;\;2!\;}}\]--(3)
Since \[3! = 3 \times 2 \times 1 = 6\] and \[2! = 2\] then the equation (3) becomes
\[\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}{{\left( {n - 3} \right)!\;6\;\;}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!\;\;2\;}}\]--(4)
Simplifying the equation (4), we get
\[\dfrac{{\left( {n - 2} \right)}}{{6\;}} = \dfrac{1}{{2\;}}\]
\[ \Rightarrow n - 2 = 3\]
\[ \Rightarrow n = 5\]
Hence, $n=5$. So, Option (C) is correct.
Note:
Note that a permutation is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter. The formula for a permutation is \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] where \[n\] is the total items in the set and \[r\] is the number of items taken for the permutation.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

