Answer
Verified
394.5k+ views
Hint: First we have to know a combination is a mathematical technique that determines the number of possible arrangements in a collection of items where we select the items in any order. Using the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\;\;r!\;}}\] where \[n\] is the total items in the set and \[r\] is the number of items taken for the permutation to find the value of \[n\].
Complete step by step solution:
The factorial of a natural number is a number multiplied by "number minus one", then by "number minus two", and so on till \[1\] i.e., \[n! = n \times \left( {n - 1} \right) \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times - - - \times 2 \times 1\] . The factorial of \[n\] is denoted as \[n!\].
Given \[{}^n{C_3} = {}^n{C_2}\]---(1)
Using the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\;\;r!\;}}\]in the equation (1), we get
\[\dfrac{{n!}}{{\left( {n - 3} \right)!\;\;3!\;}} = \dfrac{{n!}}{{\left( {n - 2} \right)!\;\;2!\;}}\]---(2)
Since \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)!\] and \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!\] then the equation (2) becomes
\[\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}{{\left( {n - 3} \right)!\;\;3!\;}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!\;\;2!\;}}\]--(3)
Since \[3! = 3 \times 2 \times 1 = 6\] and \[2! = 2\] then the equation (3) becomes
\[\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}{{\left( {n - 3} \right)!\;6\;\;}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!\;\;2\;}}\]--(4)
Simplifying the equation (4), we get
\[\dfrac{{\left( {n - 2} \right)}}{{6\;}} = \dfrac{1}{{2\;}}\]
\[ \Rightarrow n - 2 = 3\]
\[ \Rightarrow n = 5\]
Hence, $n=5$. So, Option (C) is correct.
Note:
Note that a permutation is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter. The formula for a permutation is \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] where \[n\] is the total items in the set and \[r\] is the number of items taken for the permutation.
Complete step by step solution:
The factorial of a natural number is a number multiplied by "number minus one", then by "number minus two", and so on till \[1\] i.e., \[n! = n \times \left( {n - 1} \right) \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times - - - \times 2 \times 1\] . The factorial of \[n\] is denoted as \[n!\].
Given \[{}^n{C_3} = {}^n{C_2}\]---(1)
Using the combination formula \[{}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!\;\;r!\;}}\]in the equation (1), we get
\[\dfrac{{n!}}{{\left( {n - 3} \right)!\;\;3!\;}} = \dfrac{{n!}}{{\left( {n - 2} \right)!\;\;2!\;}}\]---(2)
Since \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)!\] and \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!\] then the equation (2) becomes
\[\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}{{\left( {n - 3} \right)!\;\;3!\;}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!\;\;2!\;}}\]--(3)
Since \[3! = 3 \times 2 \times 1 = 6\] and \[2! = 2\] then the equation (3) becomes
\[\dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)!}}{{\left( {n - 3} \right)!\;6\;\;}} = \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {n - 2} \right)!\;\;2\;}}\]--(4)
Simplifying the equation (4), we get
\[\dfrac{{\left( {n - 2} \right)}}{{6\;}} = \dfrac{1}{{2\;}}\]
\[ \Rightarrow n - 2 = 3\]
\[ \Rightarrow n = 5\]
Hence, $n=5$. So, Option (C) is correct.
Note:
Note that a permutation is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter. The formula for a permutation is \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] where \[n\] is the total items in the set and \[r\] is the number of items taken for the permutation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it