
If $ n \geqslant 2$ then $3{C_1} - 4{C_2} + 5{C_3} - .......1{\left( { - 1} \right)^{n - 1}}\left( {n + 2} \right){C_n}$ is equal to
A.$ - 1$
B. 2
C.$ - 2$
D.1
Answer
485.1k+ views
Hint: We got the ${n^{th}}$ term as \[{\left( { - 1} \right)^{n - 1}}\left( {n + 2} \right){C_n}\] and the given series is
\[\dfrac{{i = n}}{{\dfrac{\sum }{{i = 2}}}}{\left( { - 1} \right)^{n - 1}}{\left( {i + 2} \right)^n}Ci\]
Divide the express into 2 and relate it with binomial expansion’s coefficient where $x = - 1$ for ${\left( {1 + x} \right)^n}$
Complete step-by-step answer:
Let’s begin with given expansion. It is
\[ \Rightarrow {3^n}{C_1} - {4^ n }{C_2} + {5^n}{C_3} - ........ + {\left( { - 1} \right)^{n - 1}}{\left( {n + 2} \right)^n}{C_ n}\]
So we can take ${n^{th}}$ term as
$ \Rightarrow {\left( { - 1} \right)^{r - 1}}\left( {r + 2} \right){\;^n}{C_r}$
Hence, series can also be written as
$\dfrac{n}{{\dfrac{\sum }{{r = 1}}}}{\left( { - 1} \right)^{n - 1}}\left( {r + 2} \right){\;^n}{C_r}$ $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}\left[ {{{\left( { - 1} \right)}^{r - 1}}r{\;^n}{C_r} + {{\left( { - 1} \right)}^{r - 1}}2.\;2{\;^n}{C_r}} \right]$
So we can divide the expression into Z. where $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}r.{\;^n}{C_r}\;\;\;\& \,2.\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\;^n}{C_r}$
First, I would like to solve $\dfrac{{\dfrac{n}{\sum }}}{{i = 1}}{\left( { - 1} \right)^r}\;r{\;^n}{c_r}$. By observing the equation formation. Each of the values having term r as a multiple is quite different from a regular expression. It can be obtained on a regular basis , if the variable is differentiator.
As we know that binomial expansion of
${\left( {1 + x} \right)^ n }{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2}{ + ^n}{C_3}{x^3} + ......{ + ^n}{C_n}{x^n}$
If we differentiate both the side, we get $w.r.t\;x$
\[ \Rightarrow n{\left( {1 + x} \right)^{n - 1}} = 0{ + ^n}{C_1}{ + ^n}{C_2}.2x{ + ^n}{C_3}.3{x^{^2}} + {.....^n}{C_n} * n.{x^{n - 1}}\]
\[ \Rightarrow n{\left( {1 + x} \right)^{n - 1}}{ = ^n}{C_1} + {2^n}.{C_2}x + {3.^n}{C_3}.{x^2} + ...... - 1n{.^n}{C_n}.{x^{n - 1}}\]
To obtain the relation with $\left( { - 1} \right)$ in each term we can use $x = - 1.$ so we get.
$ \Rightarrow n{\left( {1 - 1} \right)^{n - 1}} = 0{ + ^n}{C_1} + {2.^n}{C_2}\left( { - 1} \right) + {3.^n}{C_3}{\left( { - 1} \right)^2} + ...... + n{.^n}{C_n}\left( { - 1} \right)$
$ \Rightarrow 0 = 0{ + ^n}{C_1} - {2.^C}{n_2} + {3.^n}{C_3} - {4.^n}{C_4}......$
Hence. We got
$\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r = 1}}r{.^n}{C_r} = 0$ ①
Now, let’s compute
\[\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^x}{C_r},\]
Which can be computed from Coefficient of ${\left( {1 + x} \right)^ n }$ Binomial expansion will be
${\left( {1 + x} \right)^n}{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2} + ......{ + ^n}{C_n}{x^n}$
If if need the expression in the form
\[\left[ {^n{C_1}{ - ^n}{C_2}{ + ^n}{C_3}{ - ^n}{C_4} + .........} \right]\]
We need to put a Value of $x = - 1$ . Therefore the equation will give
$ \Rightarrow {\left( {1 - 1} \right)^n}{ = ^n}{C_0}{ + ^n}{C_1}\left( { - 1} \right){ + ^n}{C_2}{\left( { - 1} \right)^2} + ........{ + ^n}{C_n}{\left( { - 1} \right)^n}$
$ \Rightarrow 0{ = ^n}{C_0}{ - ^n}{C_1}{ + ^n}{C_2}{ - ^n}{C_3} + .........{ + ^n}{C_n}{\left( { - 1} \right)^n}$
If we compare, the equation resulted in
$ \Rightarrow 0{ = ^n}{C_0} - \left[ {^n{C_1}{ - ^n}{C_2}{ + ^n}{C_3}{ - ^n}{C_4} + ...... + {{\left( { - 1} \right)}^{n - 1}}^n{C_n}} \right]$
${ = ^n}{C_0} - \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}^n{C_r}$
Therefore, $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{n - 1}}^n{C_r}{ = ^n}{C_0} = 1$
We required $2 \times \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{n - 1}}^n{C_r} = 2 \times \left( 1 \right) = 2$ (2)
Hence we got both the value. So the equation given
$ \Rightarrow \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}{\left( {r + 1} \right)^n}{C_r} + 2\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}^n{C_r}$
Using (1) and (2) we got
$ \Rightarrow 0 + 2\left( 1 \right)$
$ = 2$
Hence, option B is the correct answer.
Note: If we get into any binomial form of expression. It will be anyhow, the form of Binomial Expression for any short Expression. Binomial Properties are used to shorten the calculation like.
${ \Rightarrow ^n}{C_r}{ + ^n}{C_{r - 1}}{ = ^{n + 1}}{C_r}$
\[\dfrac{{i = n}}{{\dfrac{\sum }{{i = 2}}}}{\left( { - 1} \right)^{n - 1}}{\left( {i + 2} \right)^n}Ci\]
Divide the express into 2 and relate it with binomial expansion’s coefficient where $x = - 1$ for ${\left( {1 + x} \right)^n}$
Complete step-by-step answer:
Let’s begin with given expansion. It is
\[ \Rightarrow {3^n}{C_1} - {4^ n }{C_2} + {5^n}{C_3} - ........ + {\left( { - 1} \right)^{n - 1}}{\left( {n + 2} \right)^n}{C_ n}\]
So we can take ${n^{th}}$ term as
$ \Rightarrow {\left( { - 1} \right)^{r - 1}}\left( {r + 2} \right){\;^n}{C_r}$
Hence, series can also be written as
$\dfrac{n}{{\dfrac{\sum }{{r = 1}}}}{\left( { - 1} \right)^{n - 1}}\left( {r + 2} \right){\;^n}{C_r}$ $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}\left[ {{{\left( { - 1} \right)}^{r - 1}}r{\;^n}{C_r} + {{\left( { - 1} \right)}^{r - 1}}2.\;2{\;^n}{C_r}} \right]$
So we can divide the expression into Z. where $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}r.{\;^n}{C_r}\;\;\;\& \,2.\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\;^n}{C_r}$
First, I would like to solve $\dfrac{{\dfrac{n}{\sum }}}{{i = 1}}{\left( { - 1} \right)^r}\;r{\;^n}{c_r}$. By observing the equation formation. Each of the values having term r as a multiple is quite different from a regular expression. It can be obtained on a regular basis , if the variable is differentiator.
As we know that binomial expansion of
${\left( {1 + x} \right)^ n }{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2}{ + ^n}{C_3}{x^3} + ......{ + ^n}{C_n}{x^n}$
If we differentiate both the side, we get $w.r.t\;x$
\[ \Rightarrow n{\left( {1 + x} \right)^{n - 1}} = 0{ + ^n}{C_1}{ + ^n}{C_2}.2x{ + ^n}{C_3}.3{x^{^2}} + {.....^n}{C_n} * n.{x^{n - 1}}\]
\[ \Rightarrow n{\left( {1 + x} \right)^{n - 1}}{ = ^n}{C_1} + {2^n}.{C_2}x + {3.^n}{C_3}.{x^2} + ...... - 1n{.^n}{C_n}.{x^{n - 1}}\]
To obtain the relation with $\left( { - 1} \right)$ in each term we can use $x = - 1.$ so we get.
$ \Rightarrow n{\left( {1 - 1} \right)^{n - 1}} = 0{ + ^n}{C_1} + {2.^n}{C_2}\left( { - 1} \right) + {3.^n}{C_3}{\left( { - 1} \right)^2} + ...... + n{.^n}{C_n}\left( { - 1} \right)$
$ \Rightarrow 0 = 0{ + ^n}{C_1} - {2.^C}{n_2} + {3.^n}{C_3} - {4.^n}{C_4}......$
Hence. We got
$\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r = 1}}r{.^n}{C_r} = 0$ ①
Now, let’s compute
\[\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^x}{C_r},\]
Which can be computed from Coefficient of ${\left( {1 + x} \right)^ n }$ Binomial expansion will be
${\left( {1 + x} \right)^n}{ = ^n}{C_0}{ + ^n}{C_1}x{ + ^n}{C_2}{x^2} + ......{ + ^n}{C_n}{x^n}$
If if need the expression in the form
\[\left[ {^n{C_1}{ - ^n}{C_2}{ + ^n}{C_3}{ - ^n}{C_4} + .........} \right]\]
We need to put a Value of $x = - 1$ . Therefore the equation will give
$ \Rightarrow {\left( {1 - 1} \right)^n}{ = ^n}{C_0}{ + ^n}{C_1}\left( { - 1} \right){ + ^n}{C_2}{\left( { - 1} \right)^2} + ........{ + ^n}{C_n}{\left( { - 1} \right)^n}$
$ \Rightarrow 0{ = ^n}{C_0}{ - ^n}{C_1}{ + ^n}{C_2}{ - ^n}{C_3} + .........{ + ^n}{C_n}{\left( { - 1} \right)^n}$
If we compare, the equation resulted in
$ \Rightarrow 0{ = ^n}{C_0} - \left[ {^n{C_1}{ - ^n}{C_2}{ + ^n}{C_3}{ - ^n}{C_4} + ...... + {{\left( { - 1} \right)}^{n - 1}}^n{C_n}} \right]$
${ = ^n}{C_0} - \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}^n{C_r}$
Therefore, $\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{n - 1}}^n{C_r}{ = ^n}{C_0} = 1$
We required $2 \times \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{n - 1}}^n{C_r} = 2 \times \left( 1 \right) = 2$ (2)
Hence we got both the value. So the equation given
$ \Rightarrow \dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}{\left( {r + 1} \right)^n}{C_r} + 2\dfrac{{\dfrac{n}{\sum }}}{{r = 1}}{\left( { - 1} \right)^{r - 1}}^n{C_r}$
Using (1) and (2) we got
$ \Rightarrow 0 + 2\left( 1 \right)$
$ = 2$
Hence, option B is the correct answer.
Note: If we get into any binomial form of expression. It will be anyhow, the form of Binomial Expression for any short Expression. Binomial Properties are used to shorten the calculation like.
${ \Rightarrow ^n}{C_r}{ + ^n}{C_{r - 1}}{ = ^{n + 1}}{C_r}$
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
