
If $n > 3$ and $a,b\in R$, then the value of $ab-n\left( a-1 \right)\left( b-1 \right)+\dfrac{n\left( n-1 \right)\left( a-2 \right)\left( b-2 \right)...+{{\left( -1 \right)}^{n}}\left( a-n \right)\left( b-n \right)}{1.2}$ is equal to
(a) ${{a}^{n}}+{{b}^{n}}$
(b) $\dfrac{{{a}^{n}}-{{b}^{n}}}{a-b}$
(c) ${{\left( ab \right)}^{n}}$
(d) $0$
Answer
564.3k+ views
Hint: We will solve this problem by using binomial theorem. For this, let us understand what a binomial theorem given by the formula${{\left( x+a \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{x}^{n-r}}{{a}^{r}}$. Then, by taking $ab$ common from the entire equation and by using the concept of combination to replace values like 1, n and so on as ${}^{n}{{C}_{0}}=1,{}^{n}{{C}_{1}}=n,{}^{n}{{C}_{2}}=\dfrac{n\left( n-1 \right)}{2}$ and${}^{n}{{C}_{n}}=1$, we get the desired form. Then, by cancelling the common terms from numerator and denominator, we get the required answer.
Complete step by step answer:
We will solve this problem by using binomial theorem. For this, let us understand what a binomial theorem is.
According to Binomial theorem, if $x$ and $a$are real numbers then for all\[n\in N\],
${{\left( x+a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{a}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{a}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+...+{}^{n}{{C}_{r}}{{x}^{n-r}}{{a}^{r}}+...+{}^{n}{{C}_{n-1}}{{x}^{1}}{{a}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{0}}{{a}^{n}}$ , i.e.,
${{\left( x+a \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{x}^{n-r}}{{a}^{r}}$.
Now let us solve the given problem based on the Binomial theorem.
We have
$ab-n\left( a-1 \right)\left( b-1 \right)+\dfrac{n\left( n-1 \right)\left( a-2 \right)\left( b-2 \right)...+{{\left( -1 \right)}^{n}}\left( a-n \right)\left( b-n \right)}{1.2}$
Then, by taking $ab$ common from the entire equation, we get:
\[ab\left\{ 1-n\left( 1-\dfrac{1}{a} \right)\left( 1-\dfrac{1}{b} \right)+\dfrac{n\left( n-1 \right)}{1.2}\left( 1-\dfrac{2}{a} \right)\left( 1-\dfrac{2}{b} \right)...+{{\left( -1 \right)}^{n}}\left( 1-\dfrac{n}{a} \right)\left( 1-\dfrac{n}{b} \right) \right\}\]
Then, by using the concept of combination to replace values like 1, n and so on as:
${}^{n}{{C}_{0}}=1,{}^{n}{{C}_{1}}=n,{}^{n}{{C}_{2}}=\dfrac{n\left( n-1 \right)}{2}$ and${}^{n}{{C}_{n}}=1$.
Then, by substituting the above values in the expression, we get:
$ab\left\{ {}^{n}{{C}_{0}}1-{}^{n}{{C}_{1}}\left( 1-\dfrac{1}{a} \right)\left( 1-\dfrac{1}{b} \right)+{}^{n}{{C}_{2}}\left( 1-\dfrac{2}{a} \right)\left( 1-\dfrac{2}{b} \right)...+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}\left( 1-\dfrac{n}{a} \right)\left( 1-\dfrac{n}{b} \right) \right\}$
$\Rightarrow ab\left\{ \dfrac{{{a}^{n}}-{{b}^{n}}}{ab\left( a-b \right)} \right\}$
Now, by cancelling the common terms from numerator and denominator, we get:
$\dfrac{{{a}^{n}}-{{b}^{n}}}{\left( a-b \right)}$
So, we get the value of the given expression as $\dfrac{{{a}^{n}}-{{b}^{n}}}{\left( a-b \right)}$.
So, the correct answer is “Option B”.
Note: Now, to solve these type of problems we need to know the basics of the combination given by the formula as for ${}^{n}{{C}_{r}}$ as $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$. Now, we must also know the formula for calculating the factorial of any number n by multiplying with (n-1) till it reaches 1. To understand let us find factorial of 3 as:
$\begin{align}
& 3!=3\times 2\times 1 \\
& \Rightarrow 6 \\
\end{align}$
Complete step by step answer:
We will solve this problem by using binomial theorem. For this, let us understand what a binomial theorem is.
According to Binomial theorem, if $x$ and $a$are real numbers then for all\[n\in N\],
${{\left( x+a \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{a}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{a}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{a}^{2}}+...+{}^{n}{{C}_{r}}{{x}^{n-r}}{{a}^{r}}+...+{}^{n}{{C}_{n-1}}{{x}^{1}}{{a}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{0}}{{a}^{n}}$ , i.e.,
${{\left( x+a \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}}{{x}^{n-r}}{{a}^{r}}$.
Now let us solve the given problem based on the Binomial theorem.
We have
$ab-n\left( a-1 \right)\left( b-1 \right)+\dfrac{n\left( n-1 \right)\left( a-2 \right)\left( b-2 \right)...+{{\left( -1 \right)}^{n}}\left( a-n \right)\left( b-n \right)}{1.2}$
Then, by taking $ab$ common from the entire equation, we get:
\[ab\left\{ 1-n\left( 1-\dfrac{1}{a} \right)\left( 1-\dfrac{1}{b} \right)+\dfrac{n\left( n-1 \right)}{1.2}\left( 1-\dfrac{2}{a} \right)\left( 1-\dfrac{2}{b} \right)...+{{\left( -1 \right)}^{n}}\left( 1-\dfrac{n}{a} \right)\left( 1-\dfrac{n}{b} \right) \right\}\]
Then, by using the concept of combination to replace values like 1, n and so on as:
${}^{n}{{C}_{0}}=1,{}^{n}{{C}_{1}}=n,{}^{n}{{C}_{2}}=\dfrac{n\left( n-1 \right)}{2}$ and${}^{n}{{C}_{n}}=1$.
Then, by substituting the above values in the expression, we get:
$ab\left\{ {}^{n}{{C}_{0}}1-{}^{n}{{C}_{1}}\left( 1-\dfrac{1}{a} \right)\left( 1-\dfrac{1}{b} \right)+{}^{n}{{C}_{2}}\left( 1-\dfrac{2}{a} \right)\left( 1-\dfrac{2}{b} \right)...+{{\left( -1 \right)}^{n}}{}^{n}{{C}_{n}}\left( 1-\dfrac{n}{a} \right)\left( 1-\dfrac{n}{b} \right) \right\}$
$\Rightarrow ab\left\{ \dfrac{{{a}^{n}}-{{b}^{n}}}{ab\left( a-b \right)} \right\}$
Now, by cancelling the common terms from numerator and denominator, we get:
$\dfrac{{{a}^{n}}-{{b}^{n}}}{\left( a-b \right)}$
So, we get the value of the given expression as $\dfrac{{{a}^{n}}-{{b}^{n}}}{\left( a-b \right)}$.
So, the correct answer is “Option B”.
Note: Now, to solve these type of problems we need to know the basics of the combination given by the formula as for ${}^{n}{{C}_{r}}$ as $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$. Now, we must also know the formula for calculating the factorial of any number n by multiplying with (n-1) till it reaches 1. To understand let us find factorial of 3 as:
$\begin{align}
& 3!=3\times 2\times 1 \\
& \Rightarrow 6 \\
\end{align}$
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

