
If ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$, find n.
Answer
482.7k+ views
Hint: We’ll approach the value of n by simplifying the equation ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$, for the simplification of this equation we’ll use of the formula
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
Further, we’ll obtain a quadratic equation in ‘n’ then on solving that quadratic equation for ‘n’ we’ll get two values for it as ‘n’ is a natural number, we’ll get our answer.
Complete step by step answer:
Given data: ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
Now, solving for ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
\[ \Rightarrow \dfrac{{{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}}}{{{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
Using, ${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
\[\dfrac{{\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}}}{{\dfrac{{{\text{(n + 1)!}}}}{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On simplification we get,
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On Using ${\text{n! = n(n - 1)!}}$, we get,
\[\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)(n - 4)!}}}}{{{\text{(n + 1)n(n - 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On cancelling common terms we get,
\[ \Rightarrow \dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)}}}}{{{\text{(n + 1)n}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
After cross multiplication we get,
\[ \Rightarrow {\text{12}}\left( {{\text{n - 2}}} \right){\text{(n - 3) = 5(n + 1)n}}\]
On expansion we get,
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 3n - 2n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 5n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
On further simplification we get,
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 60n + 72 = 5}}{{\text{n}}^{\text{2}}}{\text{ + 5n}}\]
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 5}}{{\text{n}}^{\text{2}}}{\text{ - 60n - 5n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 65n + 72 = 0}}\]
Now we’ll split the coefficient of n such that they are the factors of the coefficient of ${{\text{n}}^{\text{2}}}$ and independent term, we get,
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - (56 + 9)n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 56n - 9n + 72 = 0}}\]
On taking factors common we get,
\[ \Rightarrow {\text{7n(n - 8) - 9(n - 8) = 0}}\]
After taking (n-8) common from both the terms we get,
\[ \Rightarrow {\text{(n - 8)(7n - 9) = 0}}\]
\[{\text{i}}{\text{.e n - 8 = 0 or 7n - 9 = 0}}\]
\[\therefore {\text{n = 8 or n = }}\dfrac{{\text{9}}}{{\text{7}}}\]
Since n is a natural number
Answer is n=8
Note: A permutation is selecting all the ordered pair of ‘r’ elements out of ‘n’ total elements is given by ${}^{\text{n}}{{\text{P}}_{\text{r}}}$, and this expression is equal to
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
It can also be said for arranging all the elements in order after selecting combinations of ‘r’ element out of total ‘n’ elements, where expression for combination is ${}^{\text{n}}{{\text{C}}_{\text{r}}}$, and this expression is equal to
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Since we said that permutation is the number of arrangements of all those elements that have been chosen in the time of combination, we say that
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}{}^{\text{n}}{{\text{C}}_{\text{r}}}$
Or for more simplification, we can conclude that
$\begin{gathered}
{}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}\dfrac{{n!}}{{r!\left( {n - r} \right)!}} \\
\Rightarrow {}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{n!}}{{\left( {n - r} \right)!}} \\
\end{gathered} $
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
Further, we’ll obtain a quadratic equation in ‘n’ then on solving that quadratic equation for ‘n’ we’ll get two values for it as ‘n’ is a natural number, we’ll get our answer.
Complete step by step answer:
Given data: ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
Now, solving for ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
\[ \Rightarrow \dfrac{{{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}}}{{{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
Using, ${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
\[\dfrac{{\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}}}{{\dfrac{{{\text{(n + 1)!}}}}{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On simplification we get,
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On Using ${\text{n! = n(n - 1)!}}$, we get,
\[\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)(n - 4)!}}}}{{{\text{(n + 1)n(n - 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On cancelling common terms we get,
\[ \Rightarrow \dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)}}}}{{{\text{(n + 1)n}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
After cross multiplication we get,
\[ \Rightarrow {\text{12}}\left( {{\text{n - 2}}} \right){\text{(n - 3) = 5(n + 1)n}}\]
On expansion we get,
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 3n - 2n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 5n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
On further simplification we get,
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 60n + 72 = 5}}{{\text{n}}^{\text{2}}}{\text{ + 5n}}\]
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 5}}{{\text{n}}^{\text{2}}}{\text{ - 60n - 5n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 65n + 72 = 0}}\]
Now we’ll split the coefficient of n such that they are the factors of the coefficient of ${{\text{n}}^{\text{2}}}$ and independent term, we get,
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - (56 + 9)n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 56n - 9n + 72 = 0}}\]
On taking factors common we get,
\[ \Rightarrow {\text{7n(n - 8) - 9(n - 8) = 0}}\]
After taking (n-8) common from both the terms we get,
\[ \Rightarrow {\text{(n - 8)(7n - 9) = 0}}\]
\[{\text{i}}{\text{.e n - 8 = 0 or 7n - 9 = 0}}\]
\[\therefore {\text{n = 8 or n = }}\dfrac{{\text{9}}}{{\text{7}}}\]
Since n is a natural number
Answer is n=8
Note: A permutation is selecting all the ordered pair of ‘r’ elements out of ‘n’ total elements is given by ${}^{\text{n}}{{\text{P}}_{\text{r}}}$, and this expression is equal to
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
It can also be said for arranging all the elements in order after selecting combinations of ‘r’ element out of total ‘n’ elements, where expression for combination is ${}^{\text{n}}{{\text{C}}_{\text{r}}}$, and this expression is equal to
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Since we said that permutation is the number of arrangements of all those elements that have been chosen in the time of combination, we say that
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}{}^{\text{n}}{{\text{C}}_{\text{r}}}$
Or for more simplification, we can conclude that
$\begin{gathered}
{}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}\dfrac{{n!}}{{r!\left( {n - r} \right)!}} \\
\Rightarrow {}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{n!}}{{\left( {n - r} \right)!}} \\
\end{gathered} $
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
