Answer
Verified
444.9k+ views
Hint: We’ll approach the value of n by simplifying the equation ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$, for the simplification of this equation we’ll use of the formula
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
Further, we’ll obtain a quadratic equation in ‘n’ then on solving that quadratic equation for ‘n’ we’ll get two values for it as ‘n’ is a natural number, we’ll get our answer.
Complete step by step answer:
Given data: ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
Now, solving for ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
\[ \Rightarrow \dfrac{{{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}}}{{{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
Using, ${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
\[\dfrac{{\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}}}{{\dfrac{{{\text{(n + 1)!}}}}{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On simplification we get,
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On Using ${\text{n! = n(n - 1)!}}$, we get,
\[\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)(n - 4)!}}}}{{{\text{(n + 1)n(n - 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On cancelling common terms we get,
\[ \Rightarrow \dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)}}}}{{{\text{(n + 1)n}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
After cross multiplication we get,
\[ \Rightarrow {\text{12}}\left( {{\text{n - 2}}} \right){\text{(n - 3) = 5(n + 1)n}}\]
On expansion we get,
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 3n - 2n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 5n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
On further simplification we get,
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 60n + 72 = 5}}{{\text{n}}^{\text{2}}}{\text{ + 5n}}\]
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 5}}{{\text{n}}^{\text{2}}}{\text{ - 60n - 5n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 65n + 72 = 0}}\]
Now we’ll split the coefficient of n such that they are the factors of the coefficient of ${{\text{n}}^{\text{2}}}$ and independent term, we get,
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - (56 + 9)n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 56n - 9n + 72 = 0}}\]
On taking factors common we get,
\[ \Rightarrow {\text{7n(n - 8) - 9(n - 8) = 0}}\]
After taking (n-8) common from both the terms we get,
\[ \Rightarrow {\text{(n - 8)(7n - 9) = 0}}\]
\[{\text{i}}{\text{.e n - 8 = 0 or 7n - 9 = 0}}\]
\[\therefore {\text{n = 8 or n = }}\dfrac{{\text{9}}}{{\text{7}}}\]
Since n is a natural number
Answer is n=8
Note: A permutation is selecting all the ordered pair of ‘r’ elements out of ‘n’ total elements is given by ${}^{\text{n}}{{\text{P}}_{\text{r}}}$, and this expression is equal to
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
It can also be said for arranging all the elements in order after selecting combinations of ‘r’ element out of total ‘n’ elements, where expression for combination is ${}^{\text{n}}{{\text{C}}_{\text{r}}}$, and this expression is equal to
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Since we said that permutation is the number of arrangements of all those elements that have been chosen in the time of combination, we say that
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}{}^{\text{n}}{{\text{C}}_{\text{r}}}$
Or for more simplification, we can conclude that
$\begin{gathered}
{}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}\dfrac{{n!}}{{r!\left( {n - r} \right)!}} \\
\Rightarrow {}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{n!}}{{\left( {n - r} \right)!}} \\
\end{gathered} $
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
Further, we’ll obtain a quadratic equation in ‘n’ then on solving that quadratic equation for ‘n’ we’ll get two values for it as ‘n’ is a natural number, we’ll get our answer.
Complete step by step answer:
Given data: ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
Now, solving for ${}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}{\text{:}}{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}{\text{ = 5:12}}$
\[ \Rightarrow \dfrac{{{}^{{\text{n - 1}}}{{\text{P}}_{\text{3}}}}}{{{}^{{\text{n + 1}}}{{\text{P}}_{\text{3}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
Using, ${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
\[\dfrac{{\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}}}{{\dfrac{{{\text{(n + 1)!}}}}{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 1 - 3}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n + 1 - 3}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On simplification we get,
\[ \Rightarrow \dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{!}}}}{{{\text{(n + 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On Using ${\text{n! = n(n - 1)!}}$, we get,
\[\dfrac{{{\text{(n - 1)!}}}}{{\left( {{\text{n - 4}}} \right){\text{!}}}}\dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)(n - 4)!}}}}{{{\text{(n + 1)n(n - 1)!}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
On cancelling common terms we get,
\[ \Rightarrow \dfrac{{\left( {{\text{n - 2}}} \right){\text{(n - 3)}}}}{{{\text{(n + 1)n}}}}{\text{ = }}\dfrac{{\text{5}}}{{{\text{12}}}}\]
After cross multiplication we get,
\[ \Rightarrow {\text{12}}\left( {{\text{n - 2}}} \right){\text{(n - 3) = 5(n + 1)n}}\]
On expansion we get,
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 3n - 2n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
\[ \Rightarrow {\text{12(}}{{\text{n}}^{\text{2}}}{\text{ - 5n + 6) = 5(}}{{\text{n}}^{\text{2}}}{\text{ + n)}}\]
On further simplification we get,
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 60n + 72 = 5}}{{\text{n}}^{\text{2}}}{\text{ + 5n}}\]
\[ \Rightarrow {\text{12}}{{\text{n}}^{\text{2}}}{\text{ - 5}}{{\text{n}}^{\text{2}}}{\text{ - 60n - 5n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 65n + 72 = 0}}\]
Now we’ll split the coefficient of n such that they are the factors of the coefficient of ${{\text{n}}^{\text{2}}}$ and independent term, we get,
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - (56 + 9)n + 72 = 0}}\]
\[ \Rightarrow {\text{7}}{{\text{n}}^{\text{2}}}{\text{ - 56n - 9n + 72 = 0}}\]
On taking factors common we get,
\[ \Rightarrow {\text{7n(n - 8) - 9(n - 8) = 0}}\]
After taking (n-8) common from both the terms we get,
\[ \Rightarrow {\text{(n - 8)(7n - 9) = 0}}\]
\[{\text{i}}{\text{.e n - 8 = 0 or 7n - 9 = 0}}\]
\[\therefore {\text{n = 8 or n = }}\dfrac{{\text{9}}}{{\text{7}}}\]
Since n is a natural number
Answer is n=8
Note: A permutation is selecting all the ordered pair of ‘r’ elements out of ‘n’ total elements is given by ${}^{\text{n}}{{\text{P}}_{\text{r}}}$, and this expression is equal to
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{\left( {{\text{n - r}}} \right){\text{!}}}}$
It can also be said for arranging all the elements in order after selecting combinations of ‘r’ element out of total ‘n’ elements, where expression for combination is ${}^{\text{n}}{{\text{C}}_{\text{r}}}$, and this expression is equal to
\[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Since we said that permutation is the number of arrangements of all those elements that have been chosen in the time of combination, we say that
${}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}{}^{\text{n}}{{\text{C}}_{\text{r}}}$
Or for more simplification, we can conclude that
$\begin{gathered}
{}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = r!}}\dfrac{{n!}}{{r!\left( {n - r} \right)!}} \\
\Rightarrow {}^{\text{n}}{{\text{P}}_{\text{r}}}{\text{ = }}\dfrac{{n!}}{{\left( {n - r} \right)!}} \\
\end{gathered} $
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE