If n > 1 is an integer and $x \ne 0$, then ${\left( {1 + x} \right)^n} - nx - 1$ is divisible by
$
A.{\text{ }}n{x^3} \\
B.{\text{ }}{n^3}x \\
C.{\text{ }}x \\
D.{\text{ }}nx \\
$
Last updated date: 21st Mar 2023
•
Total views: 304.5k
•
Views today: 3.86k
Answer
304.5k+ views
Hint: In this question use the concept of binomial theorem such as expansion of ${\left( {1 + x} \right)^n}$ according to binomial expansion to reach the solution of the question.
Complete step-by-step answer:
Given equation is
${\left( {1 + x} \right)^n} - nx - 1$ [where n > 1 and $x \ne 0$]
Then we have to find out the above equation is divisible by.
So as we know the expansion of ${\left( {1 + x} \right)^n}$ according to binomial theorem is
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + .......................... + {}^n{C_n}{x^n}$
Now subtract by $\left( {nx + 1} \right)$ in both sides we have,
\[ \Rightarrow {\left( {1 + x} \right)^n} - \left( {nx + 1} \right) = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + ........................... + {}^n{C_n}{x^n} - \left( {nx + 1} \right)\]
Now as we know that the value of ${}^n{C_0} = 1{text{ \& }}{}^n{C_1} = n$. $\left[ {\because {}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}} \right]$
So on simplifying the above equation we get,
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = 1 + nx + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + .......................... + {}^n{C_n}{x^n} - 1 - nx\]
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + ......................... + {}^n{C_n}{x^n}\]
Now take ${x^2}$ common from R.H.S we have,
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = {x^2}\left( {{}^n{C_2} + {}^n{C_3}x + {}^n{C_4}{x^2} + ......................... + {}^n{C_n}{x^{n - 2}}} \right)\]
So from the above equation it is clear that the given equation is divisible by ${x^2}$ so if the equation is divisible by ${x^2}$ then it is also divisible by x.
So, this is the required answer.
Hence option (c) is correct.
Note: In such types of questions first expand ${\left( {1 + x} \right)^n}$ according to binomial expansion then subtract by $\left( {nx + 1} \right)$ on both sides and simplify then according to property of combination which is stated above the value of ${}^n{C_0} = 1{\text{ & }}{}^n{C_1} = n$ so again simplify and take ${x^2}$ common so whatever is the common, the equation is divisible by common term and if the equation is divisible by ${x^2}$ then it is also divisible by x which is the required answer.
Complete step-by-step answer:
Given equation is
${\left( {1 + x} \right)^n} - nx - 1$ [where n > 1 and $x \ne 0$]
Then we have to find out the above equation is divisible by.
So as we know the expansion of ${\left( {1 + x} \right)^n}$ according to binomial theorem is
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + .......................... + {}^n{C_n}{x^n}$
Now subtract by $\left( {nx + 1} \right)$ in both sides we have,
\[ \Rightarrow {\left( {1 + x} \right)^n} - \left( {nx + 1} \right) = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + ........................... + {}^n{C_n}{x^n} - \left( {nx + 1} \right)\]
Now as we know that the value of ${}^n{C_0} = 1{text{ \& }}{}^n{C_1} = n$. $\left[ {\because {}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}} \right]$
So on simplifying the above equation we get,
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = 1 + nx + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + .......................... + {}^n{C_n}{x^n} - 1 - nx\]
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + ......................... + {}^n{C_n}{x^n}\]
Now take ${x^2}$ common from R.H.S we have,
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = {x^2}\left( {{}^n{C_2} + {}^n{C_3}x + {}^n{C_4}{x^2} + ......................... + {}^n{C_n}{x^{n - 2}}} \right)\]
So from the above equation it is clear that the given equation is divisible by ${x^2}$ so if the equation is divisible by ${x^2}$ then it is also divisible by x.
So, this is the required answer.
Hence option (c) is correct.
Note: In such types of questions first expand ${\left( {1 + x} \right)^n}$ according to binomial expansion then subtract by $\left( {nx + 1} \right)$ on both sides and simplify then according to property of combination which is stated above the value of ${}^n{C_0} = 1{\text{ & }}{}^n{C_1} = n$ so again simplify and take ${x^2}$ common so whatever is the common, the equation is divisible by common term and if the equation is divisible by ${x^2}$ then it is also divisible by x which is the required answer.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
