Answer
Verified
491.7k+ views
Hint: In this question use the concept of binomial theorem such as expansion of ${\left( {1 + x} \right)^n}$ according to binomial expansion to reach the solution of the question.
Complete step-by-step answer:
Given equation is
${\left( {1 + x} \right)^n} - nx - 1$ [where n > 1 and $x \ne 0$]
Then we have to find out the above equation is divisible by.
So as we know the expansion of ${\left( {1 + x} \right)^n}$ according to binomial theorem is
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + .......................... + {}^n{C_n}{x^n}$
Now subtract by $\left( {nx + 1} \right)$ in both sides we have,
\[ \Rightarrow {\left( {1 + x} \right)^n} - \left( {nx + 1} \right) = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + ........................... + {}^n{C_n}{x^n} - \left( {nx + 1} \right)\]
Now as we know that the value of ${}^n{C_0} = 1{text{ \& }}{}^n{C_1} = n$. $\left[ {\because {}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}} \right]$
So on simplifying the above equation we get,
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = 1 + nx + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + .......................... + {}^n{C_n}{x^n} - 1 - nx\]
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + ......................... + {}^n{C_n}{x^n}\]
Now take ${x^2}$ common from R.H.S we have,
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = {x^2}\left( {{}^n{C_2} + {}^n{C_3}x + {}^n{C_4}{x^2} + ......................... + {}^n{C_n}{x^{n - 2}}} \right)\]
So from the above equation it is clear that the given equation is divisible by ${x^2}$ so if the equation is divisible by ${x^2}$ then it is also divisible by x.
So, this is the required answer.
Hence option (c) is correct.
Note: In such types of questions first expand ${\left( {1 + x} \right)^n}$ according to binomial expansion then subtract by $\left( {nx + 1} \right)$ on both sides and simplify then according to property of combination which is stated above the value of ${}^n{C_0} = 1{\text{ & }}{}^n{C_1} = n$ so again simplify and take ${x^2}$ common so whatever is the common, the equation is divisible by common term and if the equation is divisible by ${x^2}$ then it is also divisible by x which is the required answer.
Complete step-by-step answer:
Given equation is
${\left( {1 + x} \right)^n} - nx - 1$ [where n > 1 and $x \ne 0$]
Then we have to find out the above equation is divisible by.
So as we know the expansion of ${\left( {1 + x} \right)^n}$ according to binomial theorem is
$ \Rightarrow {\left( {1 + x} \right)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + .......................... + {}^n{C_n}{x^n}$
Now subtract by $\left( {nx + 1} \right)$ in both sides we have,
\[ \Rightarrow {\left( {1 + x} \right)^n} - \left( {nx + 1} \right) = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + ........................... + {}^n{C_n}{x^n} - \left( {nx + 1} \right)\]
Now as we know that the value of ${}^n{C_0} = 1{text{ \& }}{}^n{C_1} = n$. $\left[ {\because {}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}} \right]$
So on simplifying the above equation we get,
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = 1 + nx + {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + .......................... + {}^n{C_n}{x^n} - 1 - nx\]
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = {}^n{C_2}{x^2} + {}^n{C_3}{x^3} + {}^n{C_4}{x^4} + ......................... + {}^n{C_n}{x^n}\]
Now take ${x^2}$ common from R.H.S we have,
\[ \Rightarrow {\left( {1 + x} \right)^n} - nx - 1 = {x^2}\left( {{}^n{C_2} + {}^n{C_3}x + {}^n{C_4}{x^2} + ......................... + {}^n{C_n}{x^{n - 2}}} \right)\]
So from the above equation it is clear that the given equation is divisible by ${x^2}$ so if the equation is divisible by ${x^2}$ then it is also divisible by x.
So, this is the required answer.
Hence option (c) is correct.
Note: In such types of questions first expand ${\left( {1 + x} \right)^n}$ according to binomial expansion then subtract by $\left( {nx + 1} \right)$ on both sides and simplify then according to property of combination which is stated above the value of ${}^n{C_0} = 1{\text{ & }}{}^n{C_1} = n$ so again simplify and take ${x^2}$ common so whatever is the common, the equation is divisible by common term and if the equation is divisible by ${x^2}$ then it is also divisible by x which is the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE